Skip to main content
Log in

High reactive oxygen species levels are detected at the end of the chronological life span of translocant yeast cells

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Chromosome translocation is a major genomic event for a cell, affecting almost every of its life aspects ranging from metabolism, organelle maintenance and homeostasis to gene maintenance and expression. By using the bridge-induced translocation system, we defined the effects of induced chromosome translocation on the chronological life span (CLS) of yeast with particular interest to the oxidative stress condition. The results demonstrate that every translocant strain has a different CLS, but all have a high increase in reactive oxygen species and in lipid peroxides levels at the end of the life span. This could be due to the very unique and strong deregulation of the oxidative stress network. Furthermore, the loss of the translocated chromosome occurs at the end of the life span and is locus dependent. Additionally, the RDH54 gene may play a role in the correct segregation of the translocant chromosome, since in its absence there is an increase in loss of the bridge-induced translocated chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aust SD (1994) Thiobarbituric acid assay reactants. In: Tyson CA, Frazier JM (eds) In vitro toxicity indicators. Academic Press, San Diego, pp 367–375

    Chapter  Google Scholar 

  • Bakhoum SF, Thompson SL, Manning AL, Compton DA (2009) Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol 11:27–35

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Belancio VP, Blask DE, Deininger P, Hill SM, Jazwinski SM (2015) The aging clock and circadian control of metabolism and genome stability. Front Genet 5:455

    Article  PubMed  PubMed Central  Google Scholar 

  • Benov L, Sztejnberg L, Fridovich I (1998) Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med 25:826–831

    Article  PubMed  CAS  Google Scholar 

  • Bruschi CV, Howe GA (1988) High frequency FLP-independent homologous DNA recombination of 2-micron plasmid in the yeast Saccharomyces cerevisiae. Curr Genet 14:191–199

    Article  Google Scholar 

  • Duesberg P, Li R, Fabarius A, Hehlmann R (2005) The chromosomal basis of cancer. Cell Oncol 27:293–318

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2(2):73–81

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Longo VD (2007) The chronological life span of Saccharomyces cerevisiae. Methods Mol Biol 371:89–95

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio P, Hoon S, Shamalnasab M, Galbani A, Wei M, Giaever G, Nislow C, Longo VD (2010) Genome-wide screen in Saccharomyces cerevisiae identifies vacuolar protein sorting, autophagy, biosynthetic, and tRNA methylation genes involved in life span regulation. PLoS Genet 6:e1001024. doi:10.1371/journal.pgen.1001024

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu J, Wei M, Mirisola MG, Longo VD (2013) Assessing chronological aging in Saccharomyces cerevisiae. Methods Mol Biol 965:463–472. doi:10.1007/978-1-62703-239-130

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaiser C, Michaelis S, Mitchell A (1994) Preparation of chromosome-sized yeast DNA molecules in solid agarose. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, New York, pp 179–180

    Google Scholar 

  • Klein HL (1997) Rdh54, a Rad54 homologue in Saccharomyces cerevisiae, is required for mitotic diploid-specific recombination and repair and for meiosis. Genetics 147:1533–1543

    PubMed  CAS  PubMed Central  Google Scholar 

  • Klinger H, Rinnerthaler M, Lam YT, Laun P, Heeren G, Klocker A, Simon-Nobbe B, Dickinson JR, Dawes IW, Breitenbach M (2010) Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Exp Gerontol 45:533–542

    Article  PubMed  CAS  Google Scholar 

  • Kumaran R, Yang SY, Leu JY (2013) Characterization of chromosome stability in diploid, polyploid and hybrid yeast cells. PLoS One 8:e68094. doi:10.1371/journal.pone.0068094

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Madeo F, Frohlich E, Frohlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145(4):757–767

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Madia F, Gattazzo C, Fabrizio P, Longo VD (2007) A simple model system for age-dependent DNA damage and cancer. Mech Ageing Dev 128(1):45–49

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Madia F, Wei M, Yuan V, Hu J, Gattazzo C, Pham P, Goodman MF, Longo VD (2009) Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polzeta-dependent mechanism. J Cell Biol 186:509–523

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martins D, English AM (2014) Catalase activity is stimulated by H(2)O(2) in rich culture medium and is required for H(2)O(2) resistance and adaptation in yeast. Redox Biol 2:308–313

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maxwell PH, Burhans WC, Curcio MJ (2011) Retrotransposition is associated with genome instability during chronological aging. Proc Natl Acad Sci USA 108:20376–20381

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mazurik VK, Mikhaĭlov VF, Ushenkova LN, Raeva NF (2004) Sexual differences in a state systems of DNA structure maintenance and generation of reactive oxygen species in somatic cells of mice 101/H reparation-defective strain and manifestation of these differences after exposure to ionizing radiation. Radiats Biol Radioecol 44:516–523

    PubMed  CAS  Google Scholar 

  • Moraitis C, Curran BP (2007) Can the different heat shock response thresholds found in fermenting and respiring yeast cells be attributed to their differential redox states? Yeast 24:653–666

    Article  PubMed  CAS  Google Scholar 

  • Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9(Suppl 1):S4. doi:10.1186/gb-2008-9-s1-s4

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikitin D, Tosato V, Zavec AB, Bruschi CV (2008) Cellular and molecular effects of nonreciprocal chromosome translocations in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 105:9703–9708

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  PubMed  CAS  Google Scholar 

  • Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20:174–184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rinnerthaler M, Büttner S, Laun P, Heeren G, Felder TK, Klinger H, Weinberger M, Stolze K, Grousl T, Hasek J, Benada O, Frydlova I, Klocker A, Simon-Nobbe B, Jansko B, Breitenbach-Koller H, Eisenberg T, Gourlay CW, Madeo F, Burhans WC, Breitenbach M (2012) Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast. Proc Natl Acad Sci USA 109:8658–8663

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rossi B, Noel P, Bruschi CV (2010) Different aneuploidies arise from the same bridge-induced chromosomal translocation event in Saccharomyces cerevisiae. Genetics 186:775–790

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rowe LA, Degtyareva N, Doetsch PW (2008) DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic Biol Med 45:1167–1177

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Analysis of genomic DNA by southern hybridization. Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, p 9.31

    Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Teste MA, Duquenne M, François JM, Parrou JL (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 10:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson SL, Compton DA (2008) Examining the link between chromosomal instability and aneuploidy in human cells. JCB 180:665–672

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, Amon A (2007) Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317:916–924

    Article  PubMed  CAS  Google Scholar 

  • Tosato V, Waghmare SK, Bruschi CV (2005) Non-reciprocal chromosomal bridge-induced translocation (BIT) by targeted DNA integration in yeast. Chromosoma 114:15–27

    Article  PubMed  CAS  Google Scholar 

  • Tosato V, Nicolini C, Bruschi CV (2009) DNA bridging of yeast chromosomes VIII leads to near-reciprocal translocation and loss of heterozygosity with minor cellular defects. Chromosoma 118:179–191

    Article  PubMed  CAS  Google Scholar 

  • Tosato V, Grüning NM, Breitenbach M, Arnak R, Ralser M, Bruschi CV (2013a) Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells. Front Oncol 2:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Tosato V, Sidari S, Bruschi CV (2013b) Bridge-induced chromosome translocation in yeast relies upon a Rad54/Rdh54-dependent, Pol32-independent pathway. PLoS One 8:e60926. doi:10.1371/journal.pone.0060926

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dmitri Nikitin and Beatrice Rossi for technical help and suggestions and Frank Madeo for making available the facilities for the apoptosis experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Tosato.

Ethics declarations

Funding

VT was supported by Crescendo Biologics Ltd., Cambridge, UK.

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sims, J., Bruschi, C.V., Bertin, C. et al. High reactive oxygen species levels are detected at the end of the chronological life span of translocant yeast cells. Mol Genet Genomics 291, 423–435 (2016). https://doi.org/10.1007/s00438-015-1120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1120-9

Keywords

Navigation