Skip to main content
Log in

Genome-wide analysis of the WRKY gene family in cotton

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

WRKY proteins are major transcription factors involved in regulating plant growth and development. Although many studies have focused on the functional identification of WRKY genes, our knowledge concerning many areas of WRKY gene biology is limited. For example, in cotton, the phylogenetic characteristics, global expression patterns, molecular mechanisms regulating expression, and target genes/pathways of WRKY genes are poorly characterized. Therefore, in this study, we present a genome-wide analysis of the WRKY gene family in cotton (Gossypium raimondii and Gossypium hirsutum). We identified 116 WRKY genes in G. raimondii from the completed genome sequence, and we cloned 102 WRKY genes in G. hirsutum. Chromosomal location analysis indicated that WRKY genes in G. raimondii evolved mainly from segmental duplication followed by tandem amplifications. Phylogenetic analysis of alga, bryophyte, lycophyta, monocot and eudicot WRKY domains revealed family member expansion with increasing complexity of the plant body. Microarray, expression profiling and qRT-PCR data revealed that WRKY genes in G. hirsutum may regulate the development of fibers, anthers, tissues (roots, stems, leaves and embryos), and are involved in the response to stresses. Expression analysis showed that most group II and III GhWRKY genes are highly expressed under diverse stresses. Group I members, representing the ancestral form, seem to be insensitive to abiotic stress, with low expression divergence. Our results indicate that cotton WRKY genes might have evolved by adaptive duplication, leading to sensitivity to diverse stresses. This study provides fundamental information to inform further analysis and understanding of WRKY gene functions in cotton species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexandrova KS, Conger BV (2002) Isolation of two somatic embryogenesis-related genes from orchardgrass (Dactylis glomerata). Plant Sci 162(2):301–307. doi:10.1016/S0168-9452(01)00571-4

    Article  CAS  Google Scholar 

  • Alkan C, Coe BP, Eichler EE (2011) Applications of next-generation sequencing genome structural variation discovery and genotyping. Nat Rev Genet 12(5):363–375. doi:10.1038/Nrg2958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63(7):2667–2679. doi:10.1093/Jxb/Err450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brand LH, Fischer NM, Harter K, Kohlbacher O, Wanke D (2013) Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays. Nucleic Acids Res 41(21):9764–9778. doi:10.1093/nar/gkt732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai CP, Niu E, Du H, Zhao L, Feng Y, Guo WZ (2014) Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploid. Crop J 3. doi:10.1016/j.cj.2014.03.001

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4(1). doi:10.1186/1471-2229-4-10

  • Christianson JA, Llewellyn DJ, Dennis ES, Wilson IW (2010) Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.). Plant Cell Physiol 51(1):21–37. doi:10.1093/Pcp/Pcp163

    Article  CAS  PubMed  Google Scholar 

  • Cottee NS, Wilson IW, Tan DKY, Bange MP (2014) Understanding the molecular events underpinning cultivar differences in the physiological performance and heat tolerance of cotton (Gossypium hirsutum). Funct Plant Biol 41(1):56–67. doi:10.1071/Fp13140

    Article  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5(5):199–206. doi:10.10/S1360-1385(00)01600-9

    Article  CAS  PubMed  Google Scholar 

  • Gou JY, Wang LJ, Chen SP, Hu WL, Chen XY (2007) Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res 17(5):422–434. doi:10.1038/sj.cr.7310150

    CAS  PubMed  Google Scholar 

  • Grunewald W, Karimi M, Wieczorek K, Van de Cappelle E, Wischnitzki E, Grundler F, Inze D, Beeckman T, Gheysen G (2008) A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiol 148(1):358–368. doi:10.1104/pp.108.119131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo RY, Yu FF, Gao Z, An HL, Cao XC, Guo XQ (2011) GhWRKY3, a novel cotton (Gossypium hirsutum L.) WRKY gene, is involved in diverse stress responses. Mol Biol Rep 38(1):49–58. doi:10.1007/s11033-010-0076-4

    Article  CAS  PubMed  Google Scholar 

  • Hara K, Yagi M, Kusano T, Sano H (2000) Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol Gen Genet 263(1):30–37. doi:10.1007/Pl00008673

    Article  CAS  PubMed  Google Scholar 

  • He HS, Dong Q, Shao YH, Jiang HY, Zhu SW, Cheng BJ, Xiang Y (2012) Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. Plant Cell Rep 31(7):1199–1217. doi:10.1007/s00299-012-1241-0

    Article  CAS  PubMed  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5 (11). doi:10.1186/Gb-2004-5-11-R85

  • Hou XJ, Liu SR, Khan MRG, Hu CG, Zhang JZ (2014) Genome-wide identification, classification, expression profiling, and SSR marker development of the MADS-box gene family in citrus. Plant Mol Biol Rep 32(1):28–41. doi:10.1007/s11105-013-0597-9

    Article  CAS  Google Scholar 

  • Hu G, Koh J, Yoo MJ, Grupp K, Chen S, Wendel JF (2013) Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. New Phytol 200(2):570–582. doi:10.1111/nph.12381

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Duman JG (2002) Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Mol Biol 48(4):339–350. doi:10.1023/A:1014062714786

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T, Tabata S, Okada K, Wada T (2007) Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell 19(8):2531–2543. doi:10.1105/tpc.107.052274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet 244(6):563–571. doi:10.1007/BF00282746

    Article  CAS  PubMed  Google Scholar 

  • Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14(6):1359–1375. doi:10.1105/Tpc.001404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48(5):501–510. doi:10.1023/A:1014875206165

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Tyagi AK, Sharma AK (2011) Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development. Mol Genet Genomics 285(3):245–260. doi:10.1007/s00438-011-0602-7

    Article  CAS  PubMed  Google Scholar 

  • Lai DY, Li HZ, Fan SL, Song MZ, Pang CY, Wei HL, Liu JJ, Wu D, Gong WF, Yu SX (2011) Generation of ESTs for flowering gene discovery and SSR marker development in upland cotton. PLoS ONE 6 (12). doi:10.1371/journal.pone.0028676

  • Li HL, Zhang LB, Guo D, Li CZ, Peng SQ (2012) Identification and expression profiles of the WRKY transcription factor family in Ricinus communis. Gene 503(2):248–253. doi:10.1016/j.gene.2012.04.069

    Article  CAS  PubMed  Google Scholar 

  • Ling J, Jiang WJ, Zhang Y, Yu HJ, Mao ZC, Gu XF, Huang SW, Xie BY (2011) Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics 12. doi:10.1186/1471-2164-12-471

  • Lippok B, Birkenbihl RP, Rivory G, Brummer J, Schmelzer E, Logemann E, Somissich IE (2007) Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant Microbe In 20(4):420–429. doi:10.1094/Mpmi-20-4-0420

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Ma JH, Wei HL, Song MZ, Pang CY, Liu J, Wang L, Zhang JF, Fan SL, Yu SX (2012) Transcriptome Profiling Analysis Reveals That Flavonoid and Ascorbate-Glutathione Cycle Are Important during Anther Development in Upland Cotton. PLoS ONE 7 (11). doi:10.1371/journal.pone.0049244

  • Ma JH, Wei HL, Liu J, Song MZ, Pang CY, Wang L, Zhang WX, Fan SL, Yu SX (2013) Selection and characterization of a novel photoperiod-sensitive male sterile line in upland cotton. J Integr Plant Biol 55(7):608–618. doi:10.1111/Jipb.12067

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428(6983):653–657. doi:10.1038/Nature02398

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang HH, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15(4):809–834. doi:10.1102/Tpc.009308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55(6):853–867. doi:10.1007/s11103-004-2142-6

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Hara H, Saitou K, Kobashi A, Kojima K, Yuasa T, Ueno O (2012) Activation of ADP-Glucose Pyrophosphorylase Gene Promoters by a WRKY Transcription Factor, AtWRKY20, in Arabidopsis thaliana L. and Sweet Potato (Ipomoea batatas Lam.). Plant Prod Sci 15(1):10–18

    Article  CAS  Google Scholar 

  • Nigam D, Sawant SV (2013) Identification and Analyses of AUX-IAA target genes controlling multiple pathways in developing fiber cells of Gossypium hirsutum L. Bioinformation 9(20):996–1002. doi:10.6026/97320630009996

    Article  PubMed Central  PubMed  Google Scholar 

  • Padmalatha KV, Dhandapani G, Kanakachari M, Kumar S, Dass A, Patil DP, Rajamani V, Kumar K, Pathak R, Rawat B, Leelavathi S, Reddy PS, Jain N, Powar KN, Hiremath V, Katageri IS, Reddy MK, Solanke AU, Reddy VS, Kumar PA (2012) Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. Plant Mol Biol 78(3):223–246. doi:10.1007/s11103-011-9857-y

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin DC, Llewellyn D, Showmaker KC, Shu SQ, Udall J, Yoo MJ, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu GJ, Lee TH, Li JP, Lin LF, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E, Tan X, Tang HB, Xu CM, Wang JP, Wang ZN, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker CL, Chee PW, Das S, Gingle AR, Haigler CH, Harker D, Hoffmann LV, Hovav R, Jones DC, Lemke C, Mansoor S, Rahman MU, Rainville LN, Rambani A, Reddy UK, Rong JK, Saranga Y, Scheffler BE, Scheffler JA, Stelly DM, Triplett BA, Van Deynze A, Vaslin MFS, Waghmare VN, Walford SA, Wright RJ, Zaki EA, Zhang TZ, Dennis ES, Mayer KFX, Peterson DG, Rokhsar DS, Wang XY, Schmutz J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427. doi:10.1038/Nature11798

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R (2002) Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J 31(3):319–330. doi:10.1046/j.1365-313X.2002.01364.x

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49(6):865–879. doi:10.1093/Pcp/Pcn061

    Article  CAS  PubMed  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2(1):21–32. doi:10.1038/35047554

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Davletova S, Liang HJ, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279(12):11736–11743. doi:10.1074/jbc.M313350200

    Article  CAS  PubMed  Google Scholar 

  • Rizzon C, Ponger L, Gaut BS (2006) Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Comput Biol 2(9):989–1000. doi:10.1371/Journal.Pcbi.0020115

    Article  CAS  Google Scholar 

  • Ross CA, Liu Y, Shen QXJ (2007) The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol 49(6):827–842. doi:10.1111/j.1744-7909.2007.00504.x

    Article  CAS  Google Scholar 

  • Schauser L, Wieloch W, Stougaard J (2005) Evolution of NIN-Like proteins in Arabidopsis, rice, and Lotus japonicus. J Mol Evol 60(2):229–237. doi:10.1007/s00239-004-0144-2

    Article  CAS  PubMed  Google Scholar 

  • Senchina DS, Alvarez I, Cronn RC, Liu B, Rong JK, Noyes RD, Paterson AH, Wing RA, Wilkins TA, Wendel JF (2003) Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol Biol Evol 20(4):633–643. doi:10.1093/molbev/msg065

    Article  CAS  PubMed  Google Scholar 

  • Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315(5815):1098–1103. doi:10.1126/science.1136372

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Tate JA (2004) Advances in the study of polyploidy since Plant speciation. New Phytol 161(1):173–191. doi:10.1046/j.1469-8137.2003.00948.x

    Article  CAS  Google Scholar 

  • Song Y, Gao J (2014) Genome-wide analysis of WRKY gene family in Arabidopsis lyrata and comparison with Arabidopsis thaliana and Populus trichocarpa. Chin Sci Bull 59(8):754–765. doi:10.1007/s11434-013-0057-9

    Article  CAS  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. P Natl Acad Sci USA 103(48):18054–18059. doi:10.1073/pnas.0605389103

    Article  CAS  Google Scholar 

  • Tang J, Wang F, Wang Z, Huang ZN, Xiong AS, Hou XL (2013) Characterization and co-expression analysis of WRKY orthologs involved in responses to multiple abiotic stresses in Pak-choi (Brassica campestris ssp. chinensis). BMC Plant Biol 13. doi:10.1186/1471-2229-13-188

  • Tu LL, Zhang XL, Liu DQ, Jin SX, Cao JL, Zhu LF, Deng FL, Tan JF, Zhang CB (2007) Suitable internal control genes for qRT-PCR normalization in cotton fiber development and somatic embryogenesis. Chin Sci Bull 52(22):3110–3117. doi:10.1007/s11434-007-0461-0

    Article  CAS  Google Scholar 

  • Wang KB, Wang ZW, Li FG, Ye WW, Wang JY, Song GL, Yue Z, Cong L, Shang HH, Zhu SL, Zou CS, Li Q, Yuan YL, Lu CR, Wei HL, Gou CY, Zheng ZQ, Yin Y, Zhang XY, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu SX (2012) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44(10):1098–1103. doi:10.1038/Ng.2371

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yan Y, Li Y, Chu X, Wu C, Guo X (2014) GhWRKY40, a Multiple Stress-Responsive Cotton WRKY Gene, Plays an Important Role in the Wounding Response and Enhances Susceptibility to Ralstonia solanacearum Infection in Transgenic Nicotiana benthamiana. PLoS ONE 9 (4). doi:10.1371/journal.pone.0093577

  • Wei KF, Chen J, Chen YF, Wu LJ, Xie DX (2012) Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res 19(2):153–164. doi:10.1093/dnares/dsr048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woo HR, Kim JH, Kim J, Kim J, Lee U, Song IJ, Kim JH, Lee HY, Nam HG, Lim PO (2010) The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. J Exp Bot 61(14):3947–3957. doi:10.1093/Jxb/Erq206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu GX, Ma H, Nei M, Kong HZ (2009) Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. P Natl Acad Sci USA 106(3):835–840. doi:10.1073/pnas.0812043106

    Article  CAS  Google Scholar 

  • Xu L, Jin L, Long L, Liu LL, He X, Gao W, Zhu LF, Zhang XL (2012) Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis. Plant Cell Rep 31(12):2177–2188. doi:10.1007/s00299-012-1328-7

    Article  CAS  PubMed  Google Scholar 

  • Yang PZ, Chen ZX (2001) A family of dispersed repetitive DNA sequences in tobacco contain clusters of W-box elements recognized by pathogen-induced WRKY DNA-binding proteins. Plant Sci 161(4):655–664. doi:10.1016/S0168-9452(01)00454-X

    Article  CAS  Google Scholar 

  • Yang B, Jiang YQ, Rahman MH, Deyholos MK, Kav NNV (2009) Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments. BMC Plant Biol 9. doi:10.1186/1471-2229-9-68

  • Yu FF, Huaxia YF, Lu WJ, Wu CG, Cao XC, Guo XQ (2012) GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. BMC Plant Biol 12. doi:10.1186/1471-2229-12-144

  • Zhang LQ, Gaut BS (2003) Does recombination shape the distribution and evolution of tandemly arrayed genes (TAGs) in the Arabidopsis thaliana genome? Genome Res 13(12):2533–2540. doi:10.1101/Gr.1318503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang YJ, Wang LJ (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5(1):1. doi:10.1186/1471-2148-5-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang ZL, Xie Z, Zou XL, Casaretto J, Ho THD, Shen QXJ (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134(4):1500–1513. doi:10.1104/pp.103.034967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng ZY, Abu Qamar S, Chen ZX, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48(4):592–605. doi:10.1111/j.1365-313X.2006.02901.x

    Article  CAS  PubMed  Google Scholar 

  • Zhu YN, Shi DQ, Ruan MB, Zhang LL, Meng ZH, Liu J, Yang WC (2013) Transcriptome Analysis Reveals Crosstalk of Responsive Genes to Multiple Abiotic Stresses in Cotton (Gossypium hirsutum L.). PLoS ONE 8 (11). doi:10.1371/journal.pone.0080218

Download references

Acknowledgments

We thanks for the National Basic Research Program of China (Grant No. 2010CB126006) and the China Agriculture Research System (Grant No. CARS-18) providing the financial support for this project. We are grateful to the researchers who submitted the microarray data to the public expression databases. We are also grateful to all of the members of our laboratories who completed the expression profiling. We also thanks for EVans Ondati to help us revise the language.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxun Yu.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2014_872_MOESM1_ESM.tif

Supplementary material 1 (TIFF 118435 kb) Phylogenetic relationships between all species investigated in this study. The tree was constructed by the simplified phylogeny of species investigated in this study. The total number of WRKY proteins found in each species is indicated on the right of each species

Supplementary material 2 (XLSX 19 kb)

Supplementary material 3 (XLSX 56 kb)

Supplementary material 4 (XLSX 14 kb)

Supplementary material 5 (XLSX 20 kb)

Supplementary material 6 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, L., Zhang, X., Pang, C. et al. Genome-wide analysis of the WRKY gene family in cotton. Mol Genet Genomics 289, 1103–1121 (2014). https://doi.org/10.1007/s00438-014-0872-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0872-y

Keywords

Navigation