Skip to main content
Log in

Genomic localization of AtRE1 and AtRE2, copia-type retrotransposons, in natural variants of Arabidopsis thaliana

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Retrotransposons are ubiquitous components of plant genomes. They affect genome organization, and can also affect the expression patterns of neighboring genes. Retrotransposons are therefore important elements for changing genomic information. To understand the evolution of the Arabidopsis genome, we examined the distribution of certain retrotransposons, AtRE1s and AtRE2s, in the genomes of 12 natural variants (accessions) of Arabidopsis thaliana. AtRE1 and AtRE2 are copia-type retrotransposons that are potentially active. Their copy numbers are low, and they are absent from the genomes of some accessions. We detected four loci with AtRE1s inserted in six accessions, and one locus with an insertion of a solo-LTR-like sequence derived from AtRE1 in two accessions. Seven loci with AtRE2s inserted were detected on eight accessions. These loci were distributed in euchromatic regions of chromosomes 1, 2, 3, and 4. The AtRE1 and AtRE2 sequences at some loci identified in this study have not been recorded in the database of the 1001 Genome project. The sequences of AtRE1s and those of AtRE2s in different accessions and at different loci were highly conserved. There was a complete or almost complete conservation of sequences of both long terminal repeats in each AtRE1 and in each AtRE2. These results suggest that AtRE1 and AtRE2 appeared quite recently in the Arabidopsis genome. Furthermore, sequence comparisons of AtRE1 and AtRE2 loci among accessions revealed the possibility that large deletions containing entire sequences of AtRE1 and AtRE2 have occurred in some accessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bedbrook JR, Jones J, O’Dell M, Thompson RD, Flavell RB (1980) A molecular description of telometic heterochromatin in Secale species. Cell 19:545–560

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132

    Article  PubMed  CAS  Google Scholar 

  • Bucher E, Reinders J, Mirouze M (2012) Epigenetic control of transposons transcription and mobility in Arabidopsis. Curr Opin Plant Biol 15:503–510

    Article  PubMed  CAS  Google Scholar 

  • Bushman FD (2003) Targeting survival: integration site selection by retroviruses and LTR-retrotransposons. Cell 115:135–138

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C, Wang X, Ott F, Müller J, Alonso-Blanco C, Borgwardt K, Schmid KJ, Weigel D (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Zhang D, Cheng Z, Keller B, Ling HQ (2009) A new family of Ty1-copia-like retrotransposons originated in the tomato genome by a recent horizontal transfer event. Genetics 181:1183–1193

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci USA 109:2183–2191

    Article  Google Scholar 

  • Duan K, Ding X, Zhang Q, Zhu H, Pan A, Huang J (2008) AtCopeg1, the unique gene originated from AtCopia95 retrotransposon family, is sensitive to external hormones and abiotic stresses. Plant Cell Rep 27:1065–1073

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  PubMed  CAS  Google Scholar 

  • Gan X, Stegle O, Behr J, Steffen JG, Drewe P, Hildebrand KL, Lyngsoe R, Schultheiss SJ, Osborne EJ, Sreedharan VT, Kahles A, Bohnert R, Jean G, Derwent P, Kersey P, Belfield EJ, Harberd NP, Kemen E, Toomajian C, Kover PX, Clark RM, Rätsch G, Mott R (2011) Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477:419–423

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Hou Y, Ebina H, Levin HL, Voytas DF (2008) Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res 18:359–369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Girard A, Hannon GJ (2008) Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol 18:136–148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gogvadze E, Buzdin A (2009) Retroelements and their impact on genome evolution and functioning. Cell Mol Life Sci 66:3727–3742

    Article  PubMed  CAS  Google Scholar 

  • Grandbastien MA (1998) Activation of plant retrotransposons under stress conditions. Trends Plant Sci 3:181–187

    Article  Google Scholar 

  • Hu TT, Pattyn P, Bakker EG, Cao J, Cheng J-F, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KF, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo YL (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang CRL, Burns KH, Boeke JD (2012) Active transposition in genomes. Annu Rev Genet 46:651–675

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa A, Liu B, Kong F, Arase S, Abe J (2009) Adaptive evolution involving gene duplication and insertion of a novel Ty1/copia-like retrotransposon in soybean. J Mol Evol 69:164–175

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Suzuki M, Kuwahara A, Ooe H, Higano-Inaba K, Komeda Y (1999) Isolation and analysis of cDNA within a 300 kb Arabidopsis thaliana genomic region located around the 100 map unit of chromosome 1. Gene 239:309–316

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Kato H, Shida T, Saito T, Komeda Y (2009) Evolutionary process of the genomic sequence around the 100 map unit of chromosome 1 in Arabidopsis thaliana. J Plant Biol 52:616–624

    Article  CAS  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55:141–172

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara A, Kato A, Komeda Y (2000) Isolation and characterization of copia-type retrotransposons in Arabidopsis thaliana. Gene 244:127–136

    Article  PubMed  CAS  Google Scholar 

  • Le QH, Wright S, Yu Z, Bureau T (2000) Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:7376–7381

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    Article  PubMed  CAS  Google Scholar 

  • Mari-Ordóñez A, Marchais A, Etcheverry M, Martin A, Colot V, Voinnet O (2013) Reconstructing de novo silencing of an active plant retrotransposon. Nat Genet 45:1029–1039

    Article  PubMed  Google Scholar 

  • McCue AD, Slotkin RK (2012) Transposable element small RNAs as regulators of gene expression. Trends Genet 28:616–623

    Article  PubMed  CAS  Google Scholar 

  • Messing J, Dooner HK (2006) Organization and variability of the maize genome. Curr Opin Plant Biol 9:157–163

    Article  PubMed  CAS  Google Scholar 

  • Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K, Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:427–430

    Article  PubMed  CAS  Google Scholar 

  • Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441:947–952

    Article  PubMed  CAS  Google Scholar 

  • Miura A, Kato M, Watanabe K, Kawabe A, Kotani H, Kakutani T (2004) Genomic localization of endogenous mobile CACTA family transposons in natural variants of Arabidopsis thaliana. Mol Genet Genomics 270:524–532

    Article  PubMed  CAS  Google Scholar 

  • Pélissier T, Tutois S, Tourmente S, Deragon JM, Picard G (1996) DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetica 97:141–151

    Article  PubMed  Google Scholar 

  • Pereira V (2004) Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome. Genome Biol 5:R79

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Hormaeche J, Potet F, Beauclair L, Le Masson I, Courtial B, Bouché N, Lucas H (2008) Invasion of the Arabidopsis genome by the tobacco retrotransposon Tnt1 is controlled by reversible transcriptional gene silencing. Plant Physiol 147:1264–1278

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson-Burch BD, Nettleton D, Voytas DF (2004) Genomic neighborhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol 5:R78

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinders J, Wulff B, Mirouze M, Mari-Ordóñez A, Dapp M, Rozhon W, Bucher E, Theiler G, Paszkowski J (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 23:939–950

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97:381–388

    Article  PubMed  CAS  Google Scholar 

  • Schneeberger K, Ossowski S, Ott F, Klein JD, Wang X, Lanz C, Smith LM, Cao J, Fitz J, Warthmann N, Henz SR, Huson DH, Weigel D (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci USA 108:10249–10254

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J 13:699–705

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Sugimoto K, Kakutani T, Hirochika H (2001) Linear DNA intermediates of the Tto1 retrotransposon in Gag particles accumulated in stressed tobacco and Arabidopsis thaliana. Plant J 28:307–317

    Article  PubMed  CAS  Google Scholar 

  • Terol J, Castillo MC, Bargues M, Pérez-Alonso M, de Frutos R (2001) Structural and evolutionary analysis of the copia-like elements in the Arabidopsis thaliana genome. Mol Biol Evol 18:882–892

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T (2009) Bursts of retrotransposition reproduced in Arabidopsis. Nature 461:423–426

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara S, Kawabe A, Kobayashi A, Ito T, Aizu T, Shin-i T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T (2012) Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. Genes Dev 26:705–713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vitte C, Panaud O (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 110:91–107

    Article  PubMed  CAS  Google Scholar 

  • Voytas DF, Cummings MP, Koniczny A, Ausubel FM, Rodermel SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang W, Zheng H, Fan C, Li J, Shi J, Cai Z, Zhang G, Liu D, Zhang J, Vang S, Lu Z, Wong GK, Long M, Wang J (2006) High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18:1791–1802

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang X, Weigel D, Smith LM (2013) Transposon variants and their effects on gene expression in Arabidopsis. PLoS Genet 9:e1003255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Genome Biol 10:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wright SI, Agrawal N, Bureau TE (2003) Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. Genome Res 13:1897–1903

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xiao S, Emerson B, Ratanasut K, Patrick E, O’Neill C, Bancroft I, Turner JG (2004) Origin and maintenance of a broad-spectrum disease resistance locus in Arabidopsis. Mol Biol Evol 21:1662–1672

    Article  Google Scholar 

  • Yu A, Lepère G, Jay F, Wang J, Bapaume L, Wang Y, Abraham AL, Penterman J, Fischer RL, Voinnet O, Navarro L (2013) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci USA 110:2389–2394

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang X, Wessler SR (2004) Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc Natl Acad Sci USA 101:5589–5594

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants-in-aid for scientific research from the Japanese Ministry of Education, Science and Culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kato.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, M., Yamagishi, Y., Akaoka, M. et al. Genomic localization of AtRE1 and AtRE2, copia-type retrotransposons, in natural variants of Arabidopsis thaliana . Mol Genet Genomics 289, 821–835 (2014). https://doi.org/10.1007/s00438-014-0855-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0855-z

Keywords

Navigation