Skip to main content
Log in

Genetic control of rhizomes and genomic localization of a major-effect growth habit QTL in perennial wildrye

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Rhizomes are prostrate subterranean stems that provide primitive mechanisms of vegetative dispersal, survival, and regrowth of perennial grasses and other monocots. The extent of rhizome proliferation varies greatly among grasses, being absent in cereals and other annuals, strictly confined in caespitose perennials, or highly invasive in some perennial weeds. However, genetic studies of rhizome proliferation are limited and genes controlling rhizomatous growth habit have not been elucidated. Quantitative trait loci (QTLs) controlling rhizome spreading were compared in reciprocal backcross populations derived from hybrids of rhizomatous creeping wildrye (Leymus triticoides) and caespitose basin wildrye (L. cinereus), which are perennial relatives of wheat. Two recessive QTLs were unique to the creeping wildrye backcross, one dominant QTL was unique to the basin wildrye backcross, and one additive QTL was detectable in reciprocal backcrosses with high log odds (LOD = 31.6) in the basin wildrye background. The dominant QTL located on linkage group (LG)-2a was aligned to a dominant rhizome orthogene (Rhz3) of perennial rice (Oryza longistamina) and perennial sorghum (Sorghum propinquum). Nonparametric 99 % confidence bounds of the 31.6-LOD QTL were localized to a distal 3.8-centiMorgan region of LG-6a, which corresponds to a 0.7-Mb region of Brachypodium Chromosome 3 containing 106 genes. An Aux/IAA auxin signal factor gene was located at the 31.6-LOD peak, which could explain the gravitropic and aphototropic behavior of rhizomes. Findings elucidate genetic mechanisms controlling rhizome development and architectural growth habit differences among plant species. Results have possible applications to improve perennial forage and turf grasses, extend the vegetative life cycle of annual cereals, such as wheat, or control the invasiveness of highly rhizomatous weeds such as quackgrass (Elymus repens).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agnew ML, Christians NE (1992) Sod reestablishment of 5 Kentucky bluegrass cultivars. J Prod Agric 5:50–52

    Article  Google Scholar 

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424

    Article  CAS  PubMed  Google Scholar 

  • Babb S, Muehlbauer GJ (2003) Genetic and morphological characterization of the barley uniculm2 (cul2) mutant. Theor Appl Genet 106:846–857

    CAS  PubMed  Google Scholar 

  • Barkworth ME (2007) Triticeae. In: Barkworth ME, Capels KM, Long S, Anderton LK, Piep MB (eds) Flora of North America north of Mexico. Oxford University Press, New York, pp 238–378

    Google Scholar 

  • Bennet T, Leyser O (2006) Something on the side: axillary meristems and plant development. Plant Mol Biol 60:843–854

    Article  Google Scholar 

  • Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen Hake S (2006) ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 18:574–585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Briske DD (1996) Strategies of plant survival in grazed systems: a functional interpretation. In: Hodgson J, Illius AW (eds) The ecology and management of grazing systems. CAB International, Wallingford, pp 37–67

    Google Scholar 

  • Bushman BS, Larson SR, Mott IW, Cliften PF, Wang RRC, Chatterton NJ, Hernandez AG, Ali S, Kim RW, Thimmapuram J, Gong G, Liu L, Mikel MA (2008) Development and annotation of perennial Triticeae ESTs and SSR markers. Genome 51:779–788

    Article  CAS  PubMed  Google Scholar 

  • Childs KL, Konganti K, Buell CR (2012) The biofuel feedstock genomics resource: a web-based portal and database to enable functional genomics of plant biofuel feedstock species. Database 2012. doi:10.1093/database/bar061

  • Choczynska J, Johnson EA (2009) A soil heat and water transfer model to predict belowground grass rhizome bud death in a grass fire. J Veg Sci 20:277–287

    Article  Google Scholar 

  • Chuck G, Cigan AM, Saeteum K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tendem microRNA. Nat Genet 39:544–549

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cox TS, Bender M, Picone C, Van Tassel DL, Holland JB, Brummer EC, Zoeller BE, Paterson AH, Jackson W (2002) Breeding perennial grain crops. CRC Crit Rev Plant Sci 21:59–91

    Article  Google Scholar 

  • Cox TS, Glover JD, Van Tassel DL, Cox CM, DeHaan LR (2006) Prospects for developing perennial grain crops. Bioscience 56:649–659

    Article  Google Scholar 

  • Crossett A, Lauter N, Love TM (2010) An empirical method for establishing positional confidence intervals tailored for composite interval mapping of QTL. PLoS One 5:e90329

    Article  Google Scholar 

  • Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18:215–222

    Article  CAS  PubMed  Google Scholar 

  • Dabbert T, Okagaki RJ, Cho S, Boddu J, Muehlbaur GJ (2009) The genetics of barley low-tillering mutants: absent lower laterals (als). Theor Appl Genet 118:1351–1360

    Article  CAS  PubMed  Google Scholar 

  • Dabbert T, Okagaki RJ, Cho S, Heinen S, Boddu J, Muehlbaur GJ (2010) The genetics of barley low-tillering mutants: low number of tillers-1 (Int1). Theor Appl Genet 121:705–715

    Article  CAS  PubMed  Google Scholar 

  • Dahlgren RMT, Clifford HT, Yeo PF (1985) The families of the monocotyledons: structure, evolution, and taxonomy. Springer, Berlin

    Book  Google Scholar 

  • Dardick C, Callahan A, Horn R, Ruiz KB, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R (2013) PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J 75:18–630

    Article  Google Scholar 

  • Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA (2012) PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Res 40:D1194–D1201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Smet I, Jürgens G (2007) Patterning the axis in plants—auxin in control. Curr Opin Genet Dev 17:337–343

    Article  PubMed  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221

    Article  CAS  PubMed  Google Scholar 

  • Druka A, Muehlbauer G, Druka I et al (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics 6:202–211

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Horiuchi Y, Ueda Y et al (2010) Rice expression atlas in reproductive development. Plant Cell Physiol 51:2060–2081

    Article  CAS  PubMed  Google Scholar 

  • Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pè ME, Schmidt RJ (2004) The role of barren stalk1 in the architecture of maize. Nature 432:630–635

    Article  CAS  PubMed  Google Scholar 

  • Gibson DJ (2009) Grasses and grassland ecology. Oxford University Press, New York

    Google Scholar 

  • Glover JD, Reganold JP, Bell LW et al (2010) Increased food and ecosystem security via perennial grains. Science 328:1638–1639

    Article  CAS  PubMed  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters, and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  PubMed  Google Scholar 

  • Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOTEROS-mediated embryo patterning. Genes Dev 16:1610–1615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hangarter RP (1997) Gravity, light, and plant form. Plant Cell Environ 20:796–800

    Article  CAS  PubMed  Google Scholar 

  • Hanna WW, Anderson WF (2008) Development and impact of vegetative propagation in forage and turf bermudagrasses. Agron J 100:S103–S107

    Article  Google Scholar 

  • Harrington HD (1977) How to identify grasses and grasslike plants. Swallow Press/Ohio University Press, Athens

    Google Scholar 

  • Hashiguchi Y, Tasaka M, Morita MT (2013) Mechanism of higher plant gravity sensing. Am J Bot 100:91–100

    Article  CAS  PubMed  Google Scholar 

  • Hohm T, Preuten T, Fankhauser C (2013) Phototropism: translating light into directional growth. Am J Bot 100:47–59

    Article  CAS  PubMed  Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The World’s worst weeds: distribution and biology. University Press of Hawaii, Honolulu

    Google Scholar 

  • Hu JP, Anderson B, Wessler SR (1996) Isolation and characterization of rice R genes: evidence for distinct evolutionary paths in rice and maize. Genetics 142:1021–1031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu FY, Tao DY, Sacks E et al (2003) Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci USA 100:4050–4054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu F, Wang D, Zhao X et al (2011) Identification of rhizome-specific genes by genome-wide differential expression analysis in Oryza longistaminata. BMC Plant Biol 11:18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Institute SAS (1999) SAS/STAT user’s guide, version 8. SAS Institute, Cary

    Google Scholar 

  • Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Kaur N, Garg R, Thakur JK, Tyagi AK, Khurana JP (2006) Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct Integr Genomics 6:47–59

    Article  CAS  PubMed  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1445–1447

    Google Scholar 

  • Jia F, Wu B, Li H, Huang J, Zheng C (2013) Genome-wide identification and characterisation of F-box family in maize. Mol Genet Genomics 288:559–577

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Larson SR, Bushman BS, Wang RRC, Mott IW, Hole D, Thimmapuram J, Gong G, Liu L (2008a) Genes controlling plant growth habit in Leymus (Triticeae): maize barren stalk1 (ba1), rice lax panicle, and wheat tiller inhibition (tin3) genes as possible candidates. Funct Integr Genomics 8:375–386

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Mott IW, Larson SR, Bushman BS, Hernandez AG, Kim WR, Liu L, Mikel MA (2008b) Gene expression polymorphisms and ESTs associated with gravitropic response of subterranean branch meristems and growth habit in Leymus wildryes. Plant Sci 175:330–338

    Article  CAS  Google Scholar 

  • Komatsu K, Maekawa M, Ujile S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J (2003) LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci USA 100:11765–11770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuraparthy V, Sood S, Gill BS (2008) Genomic targeting and mapping of tiller inhibition gene (tin3) of wheat using ESTs and synteny with rice. Funct Integr Genomics 8:33–42

    Article  CAS  PubMed  Google Scholar 

  • Larson SR, Wu XL, Jones TA, Jensen KB, Chatterton NJ, Waldron B, Robins JR, Bushman BS, Palazzo AJ (2006) Growth habit, plant height, and flowering QTLs in North American Leymus wildryes. Crop Sci 46:2526–2539

    Article  CAS  Google Scholar 

  • Larson SR, Kishii M, Tsujimoto H, Qi L, Chen P, Lazo G, Jensen KB, Wang RRC (2012) Leymus EST linkage maps identify 4NsL–5NsL reciprocal translocation, wheat-Leymus chromosome introgressions, and functionally important gene loci. Theor Appl Genet 124:189–206

    Article  CAS  PubMed  Google Scholar 

  • Larson SR, Kellogg EA, Jensen KB (2013) Genes and QTLs controlling inflorescence and stem branch architecture in Leymus (Poaceae: Triticeae) wildrye. J Hered 104:678–691

    Article  CAS  PubMed  Google Scholar 

  • Li X, Qian Q, Fu Z et al (2003) Control of tillering in rice. Nature 422:618–621

    Article  CAS  PubMed  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wu C, Fu Y, Hu G, Si H, Zhu L, Luan W, He Z, Sun Z (2009) Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta 230:649–658

    Article  CAS  PubMed  Google Scholar 

  • Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton MK (1999) The PINHEAD/ZWILLE gene acts pleiotropically in Arabidoposis development and has overlapping functions with the ARGONAUTE1 gene. Development 126:469–481

    CAS  PubMed  Google Scholar 

  • Mahelka V (2006) Response to flooding intensity in Elytrigia repens, E. intermedia (Poaceae: Triticeae) and their hybrid. Weed Res 46:82–90

    Article  Google Scholar 

  • Mangin B, Goffinet B, Rebai A (1994) Constructing confidence intervals for QTL location. Genetics 138:1301–1308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mann JJ, Kyser GB, Barney JN, DiTomasso JM (2013) Assessment of aboveground and belowground vegetative fragments as propagules in the bioenergy crops Arundo donax and Miscanthus × giganteus. Bioenergy Res 6:688–698

    Article  Google Scholar 

  • Morita MT (2010) Directional gravity sensing in gravitropism. Ann Rev Plant Biol 61:705–720

    Article  CAS  Google Scholar 

  • Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001) REVOLUTA regulates meristem initiation at lateral positions. Plant J 25:223–236

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Schertz KF, Lin Y-R, Liu S-C, Chang Y-L (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci USA 92:6127–6131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Remington DL, Vision TJ, Gulfoyle TJ, Reed JW (2004) Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol 135:1738–1752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sauer M, Robert A, Kleine-Vehn J (2013) Auxin: simply complicated. J Exp Bot 64:2565–2577

    Article  CAS  PubMed  Google Scholar 

  • Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K (2002) The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci USA 99:1064–1069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song Y, Wang L, Xiong L (2009) Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta 229:577–591

    Article  CAS  PubMed  Google Scholar 

  • Spalding EP (2013) Diverting the downhill flow of auxin to steer growth during tropisms. Am J Bot 100:203–214

    Article  CAS  PubMed  Google Scholar 

  • Taylor JS, Robertson JM, Harker KN, Bhalla MK, Daly EJ, Pearce DW (1995) Apical dominance in rhizomes of quackgrass, Elytrigia repens: the effect of auxin, cytokinins, and abscisic acid. Can J Bot 73:307–314

    Article  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signaling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • The International Barley Genome Sequencing Consortium (2012) A physical, genetical and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • The International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Van Ooijen JW (2009) MapQTL® 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, Wageningen

    Google Scholar 

  • Vandenbussche F, Callebert P, Zadnikova P, Benkova E, Van Der Straeten D (2013) Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. Am J Bot 100:215–225

    Article  CAS  PubMed  Google Scholar 

  • Vernoux T, Brunoud G, Farcot E et al (2011) The auxin signaling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508

    Article  PubMed Central  PubMed  Google Scholar 

  • Villalobos LIAC, Lee S, Oliveira CD et al (2012) A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8:477–485

    Article  PubMed Central  Google Scholar 

  • Visscher PM, Thompson R, Haley CS (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143:1013–1020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart, software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang S, Bai Y, Shen C, Wu Y, Zhang S, Jiang D, Guilfoyle TJ, Chen M, Qi Y (2010a) Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct Integr Genomics 10:533–546

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Deng D, Bian Y, Lv Y, Xie Q (2010b) Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays. L.). Mol Biol Rep 37:3991–4001

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Deng D, Shi Y, Miao N, Bian Y, Yin Z (2012) Diversification, phylogeny and evolution of auxin-response factor (ARF) family: insights gained from analyzing maize ARF genes. Mol Biol Rep 37:3991–4001

    Article  Google Scholar 

  • Wang F, Cui X, Sun Y, Dong (2013) Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Rep 32:1099–1109

    Article  CAS  PubMed  Google Scholar 

  • Ware D, Jaiswal P, Ni J et al (2002) Gramene: a resource for comparative grass genomics. Nucleic Acids Res 30:103–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24:1874–1885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whipple C, Kebrom T, Weber A, Yang F, Hall D, Meeley R, Shmidt R, Doebley J, Brutnell T, Jackson D (2011) Grassy tillers1 promotes apilcal dominance in maize and responds to shade signals in grasses. Proc Natl Acad Sci USA 108:E506–E512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu XM, Larson SR, Hu ZM, Palazzo AJ, Jones TA, Wang RRC, Jensen KB, Chatterton NJ (2003) Molecular genetic linkage maps for allotetraploid Leymus wildryes (Gramineae: Triticeae). Genome 46:627–646

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Peng Z, Liu S, He Y, Cheng L, Kong F, Wang J, Lu G (2012) Genome-wide analysis of Aux/IAA gene family in Solanaceae species using tomato as a model. Mol Genet Genomics 287:295–311

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara T, Spalding EP, Lino M (2013) AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J 74:267–279

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX2 is required for negative regulation of the outgrowth of axillary buds. Plant J 48:687–696

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve R. Larson.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1. List of 213 new perennial wildrye rhizome EST markers derived from rhizome and tiller meristems of creeping × basin wildrye hybrids.

Table S2. Comprehensive list of 107 gene models between 55.21 and 55.95 Mb on Brachypodium Chromosome 3 (Bd3), list of 75 corresponding perennial wildrye rhizome ESTs aligned between 55.21 and 55.95 Mb of Bd3, and an integrated list of 106 discrete gene loci comprised of single or overlapping Brachypodium gene models and perennial wildrye rhizome ESTs.

Figure S1. Images of perennial wildrye species, hybrids, and rhizomes. (A and B) Comparison of spring regrowth in May, 2 years after establishment with 2 m spacing between propagules. (C and D) Comparison of flowering plants in July, two and 3 years after establishment. (E and F) Subterranean tiller and rhizome buds from creeping × basin wildrye hybrids exposed in October. (G) Creeping wildrye rhizomes, including one growing point, exposed about 9 cm below the frozen surface in January.

Supplementary material 1 (PPTX 3932 kb)

Supplementary material 2 (XLSX 30 kb)

Supplementary material 3 (XLSX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, L., Larson, S.R., Mott, I.W. et al. Genetic control of rhizomes and genomic localization of a major-effect growth habit QTL in perennial wildrye. Mol Genet Genomics 289, 383–397 (2014). https://doi.org/10.1007/s00438-014-0817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0817-5

Keywords

Navigation