Skip to main content
Log in

Chromosomal location of wheat genes of the carotenoid biosynthetic pathway and evidence for a catalase gene on chromosome 7A functionally associated with flour b* colour variation

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Knowledge of molecular and genetic mechanisms controlling wheat grain quality characteristics is significant for improving flour for end-product functionality. Flour b* colour is an important quality trait for breeding wheat varieties to produce grain for specific market requirements. The degree of flour yellowness is due to the accumulation of carotenoids in grain, particularly lutein. Flour b* is under polygenic control and quantitative trait loci (QTL) have frequently been reported on chromosome 7AL. Analysis of carotenoid genes showed that phytoene synthase (PSY) co-located to the QTL on 7AL but other genes at this locus are also thought to contribute flour b* colour variation. This study used the wheat genome survey sequence and identified the chromosomal location of all wheat carotenoid genes, but none other than PSY were located on 7AL and, therefore, other genes may control flour b* colour variation including oxidative genes that degrade carotenoids. An investigation of EST bin mapped to 7AL identified a gene encoding a catalase enzyme (Cat3-A1) that was phylogenetically related to other plant class III enzymes, co-located to the QTL for flour b* colour variation on 7AL in three mapping populations and expressed during seed development. Therefore, Cat3-A1 was functionally associated with flour b* colour variation. Catalase acts upon hydrogen peroxide as a substrate and it was postulated that Cat3-A1 alleles control varying degrees of bleaching action on lutein in developing wheat grain. Markers for Cat3-A1 developed in this study can be used in conjunction with other candidate gene markers including phytoene synthase and lycopene-ε-cylase to develop a molecular signature for selecting lines with specific flour b* colour values in wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aalami M, Leelavathi K, Prasado Rao UJS (2007) Spaghetti making potential of Indian durum wheat varieties in relation to protein, yellow pigment and enzyme contents. Food Chem 100:1243–1248

    Article  CAS  Google Scholar 

  • Bariana HS, Parry N, Barclay IR, Loughman R, McLean RJ, Shankar M, Wilson RE, Willey NJ, Francki M (2006) Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet 112:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Bordes J, Ravel C, Le Gouis J, Lapierre A, Charmet G, Balfourier F (2011) Use of a global wheat core collection for association analysis of flour and dough quality traits. J Cereal Sci 54:137–147

    Article  Google Scholar 

  • Borrelli GM, De Leonardis AM, Platani C, Troccoli A (2008) Distribution along durum wheat kernel of the components involve din semolin colour. J Cereal Sci 48:494–502

    Article  CAS  Google Scholar 

  • Calucci L, Capocchi A, Galleschi L, Ghiringhelli S, Pinzino C, Saviozzi F, Zandomeneghi M (2004) Antioxidants, free radicals, storage proteins, puroindolines, and proteolytic activities in bread wheat (Triticum aestivum) seeds during accelerated aging. J Agric Food Chem 52:4274–4281

    Article  PubMed  CAS  Google Scholar 

  • Cazzonelli CI (2011) Carotenoids in nature: insights from plants and beyond. Funct Plant Biol 38:833–847

    Article  CAS  Google Scholar 

  • Crawford AC, Francki MG (2013) Lycopene-e-cyclase (e-LCY3A) is functionally associated with QTL for flour b* colour on chromosome 3A in wheat (Triticum aestivum L.). Mol Breed 31:737–741

    Article  CAS  Google Scholar 

  • Crawford AC, Stefanova K, Lambe W, McLean R, Wilson R, Barclay I, Francki MG (2011) Functional relationships of phytoene synthase 1 alleles on chromosome 7A controlling flour colour variation in selected Australian wheat genotypes. Theor Appl Genet 123:95–108

    Article  PubMed  CAS  Google Scholar 

  • Dibari B, Murat F, Chosson A, Gautier V, Poncet C, Lecomte P, Mercier I, Bergès, Pont C, Blanco A, Salse J (2012). Deciphering the genomic structure, function and evolution and carotenogenesis related phytoene synthases in grasses. BMC Genomics 13:221

  • Drummond A, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2007) Geneious v4.7.5, http://www.geneious.com/

  • Fraignier M-P, Michaux-Ferrière N, Kobrehel K (2000) Distribution of peroxidases in durum wheat (Triticum durum). Cereal Chem 77:11–17

    Article  CAS  Google Scholar 

  • Francki MG (2010) Genomics for wheat improvement. In: Jain SM and Brar DS (eds) Molecular techniques in crop improvement, 2nd edn. Springer, Germany, pp 281–306

  • Francki MG, Crasta OR, Sharma HC, Ohm HW, Anderson JM (1997) Structural organization of an alien Thinopyrum intermedium group 7 chromosome in U.S. soft red winter wheat (Triticum aestivum L.). Genome 40:716–722

    Article  PubMed  CAS  Google Scholar 

  • Francki M, Walker E, Crawford A, Broughton S, Ohm H, Barclay I, Wilson R, McLean R (2009) Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 281:181–191

    Article  PubMed  CAS  Google Scholar 

  • Fratianni A, Irano M, Panfili G, Acquistucci R (2005) Estimation of color of durum wheat. Comparison of WSB, HPLC, and reflectance colorimetic measurements. J Agric Food Chem 53:2373–2378

    Article  PubMed  CAS  Google Scholar 

  • Garcia R, Kaid N, Vignaud C, Nicolas J (2000) Purification and properties of catalase from wheat germ (Triticum aestivum L.). J Agric Food Chem 48:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Gélinas P, Poitras E, McKinnon CM, Morin A (1998) Oxido-reductases and lipases as dough-bleaching agents. Cereal Chem 75:810–814

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • He XY, Zhang YL, He ZH, Wu YP, Xiao YG, Ma CX, Xia XC (2008) Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet 116:213–221

    Article  PubMed  CAS  Google Scholar 

  • He X, He Z, Ma W, Appels R, Xia X (2009) Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol Breed 23:553–563

    Article  CAS  Google Scholar 

  • Hentschel V, Kranl K, Hollmann J, Lindhauer MG, Bohm V, Bitsch R (2002) Spectrophotometric determination of yellowpigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat grain. J Agric Food Chem 50:6663–6668

    Article  PubMed  CAS  Google Scholar 

  • Hessler TG, Thomson MJ, Benscher D, Nachit MM, Sorrells ME (2002) Association of lipoxygenase locus Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Sci 42:1695–1700

    Article  CAS  Google Scholar 

  • Howitt C, Cavanagh C, Bowerman A, Cazzonelli C, Rampling L, Mimica J, Pogson B (2009) Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomics 9:363–376

    Article  PubMed  CAS  Google Scholar 

  • Kieffer R, Matheis G, Belitz H-D, Grosch W (1998) Vorkummen von lipoxygenase, katalase, und peroxidise in weizenmehlen mit unterschiedlichen backeigenschaften. Z Lebensm Unters Forsch 175:5–7

    Article  Google Scholar 

  • Leenhardt F, Lyan B, Rock E, Boussard A, Potus J, Chanliaud E, Remesy C (2006) Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivate wheat species and bread wheat varieties. Europ J Agron 25:170–176

    Article  CAS  Google Scholar 

  • Lehner A, Mamadou N, Poels P, Côme D, Bailly C, Corbineau F (2008) Changes in soluble carbohydrates, lipid peroxidation, and antioxidant enzyme activities in the embryo during ageing in wheat grains. J Cereal Sci 47:555–565

    Article  CAS  Google Scholar 

  • Lino-Neto T, Conceicão M, Barbeta C, Sousa MF, Tavares RM, Salomé Pais M (2004) Identification of Zantedeschia aethiopica Cat1 and Cat2 catalase genes and their expression analysis during spathe senescence and regreening. Plant Sci 167:889–898

    Article  CAS  Google Scholar 

  • Manly K, Cudmore R, Meer J (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Mares DJ, Campbell AW (2001) Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res 52:1297–1309

    Article  CAS  Google Scholar 

  • McCartney CA, Somers DJ, Lukow O, Ames N, Noll J, Cloutier S, Humphreys DG, McCallum BD (2006) QTL analysis of quality traits in the spring wheat cross RL4452 × ‘AC Domain’. Plant Breed 125:565–575

    Article  CAS  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    Article  PubMed  CAS  Google Scholar 

  • Miskelly DM (1984) Flour components affecting paste and noodle colour. J Sci Food Agric 35:463–471

    Article  Google Scholar 

  • Panfili G, Fratianni A, Irano M (2004) Improved normal-phase highperformance liquid chromatography procedure for the determination of carotenoids in cereals. J Agric Food Chem 52:6373–6377

    Article  PubMed  CAS  Google Scholar 

  • Parker GD, Chalmers KJ, Rathjen AJ, Langridge P (1998) Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor Appl Genet 97:238–245

    Article  CAS  Google Scholar 

  • Patil RM, Oak MD, Tamhankar SA, Sourdille P, Rao VS (2008) Mapping and validation of a major QTL for yellow pigment content on 7AL in durum wheat (Triticum turgidum L. ssp. durum). Mol Breed 21:485–496

    Article  Google Scholar 

  • Pozniak C, Knox R, Clarke F, Clarke J (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Echalier B Chao S, Lazo GR, Butler GE, Anderson OD, Akhunov ED, Dvorák J, Linkiewicz AM, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis CE, Greene RA, Kantety R, La Rota CM, Munkvold JD, Sorrells SF, Sorrells ME, Dilbirligi M, Sidhu D, Erayman M, Randhawa HS, Sandhu D, Bondareva SN, Gill KS, Mahmoud AA, Ma X-F, Miftahudin, Gustafson JP, Conley EJ, Nduati V, Gonzalez-Hernandez JL, Anderson JA, Peng JH, Lapitan NLV, Hossain KG, Kalavacharla V, Kianian SF, Pathan MS, Zhang DS, Nguyen HT, Choi D-W, Fenton RD, Close TJ, McGuire PE, Qualset CO, Gill BS (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

  • Ramachandran A, Pozniak CJ, Clarke JM, Singh AK (2010) Carotenoid accumulation during grain development in durum wheat. J Cereal Sci 52:30–38

    Article  CAS  Google Scholar 

  • Singh A, Reimer S, Pozniak C, Clarke F, Clarke J, Knox R, Singh A (2009) Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theor Appl Genet 118:1539–1548

    Article  PubMed  CAS  Google Scholar 

  • Spanò C, Bottega S, Grilli I, Lorenzi R (2011) Response to desiccation injury in developing wheat embryos from naturally- and artificially-dried grains. Plant Phys Biochem 49:363–367

    Article  Google Scholar 

  • Tsilo TJ, Hareland GA, Chao S, Anderson JA (2011) Genetic mapping and QTL analysis of flour color and milling yield related traits using recombinant inbred lines of hard red spring wheat. Crop Sci 51:237–246

    Article  Google Scholar 

  • Van Os H, Stam P, Visser RGF, Van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Gaffney P, Zeng ZB (2005) Windows QTL Cartographer 2.5 user manual. Available at http://statgen.ncsu.edu/qtlcart/WinQTLCart.pdf (verified 27 June 2007). Bioinformatics Research Center, North Carolina State University, Raleigh

  • Zhang W, Dubcovsky J (2008) Association between allelic variation at the phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor Appl Genet 116:635–645

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wu Y, Xiao Y, He Z, Zhang Y, Yan J, Zhang Y, Xia X, Ma C (2009) QTL mapping for flour and noodle colour components and yellow pigment content in common wheat. Euphytica 165:435–444

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Francki.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 742 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, A.C., Francki, M.G. Chromosomal location of wheat genes of the carotenoid biosynthetic pathway and evidence for a catalase gene on chromosome 7A functionally associated with flour b* colour variation. Mol Genet Genomics 288, 483–493 (2013). https://doi.org/10.1007/s00438-013-0767-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-013-0767-3

Keywords

Navigation