Skip to main content
Log in

Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L.

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

In this study, we report the molecular characterization and functional analysis of OsLEA5 gene, which belongs to the atypical late embryogenesis abundant (LEA) group 5C from Oryza sativa L. The cDNA of OsLEA5 contains a 456 bp ORF encoding a polypeptide of 151 amino acids with a calculated molecular mass of 16.5 kDa and a theoretical pI of 5.07. The OsLEA5 polypeptide is rich in Leu (10%), Ser (8.6%), and Asp (8.6%), while Cys, Trp, and Gln residue contents are very low, which are 2, 1.3, and 1.3%, respectively. Bioinformatic analysis revealed that group 5C LEA protein subfamily contains a Pfam:LEA_2 domain architecture and is highly hydrophobic, intrinsically ordered with largely β-sheet and specific amino acid composition and distribution. Real-time PCR analysis showed that OsLEA5 was expressed in different tissue organs during different development stages of rice. The expression levels of OsLEA5 in the roots and panicles of full ripe stage were dramatically increased. The results of stress tolerance and cell viability assay demonstrated that recombinant E. coli cells producing OsLEA5 fusion protein exhibited improved resistance against diverse abiotic stresses: high salinity, osmotic, freezing, heat, and UV radiation. The OsLEA5 protein confers stabilization of the LDH under different abiotic stresses, such as heating, freeze–thawing, and drying in vitro. The combined results indicated that OsLEA5 protein was a hydrophobic atypical LEA and closely associated with resistance to multiple abiotic stresses. This research offered the valuable information for the development of crops with enhanced resistance to diverse stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Singh M, Salamini F (1988) Onset of desiccation tolerance during development of the barley embryo. Planta 175:485–492

    Article  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  CAS  Google Scholar 

  • Ben-Zvi AP, Goloubinoff P (2001) Mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J Struct Biol 135:84–93

    Article  PubMed  CAS  Google Scholar 

  • Bies-Ethève N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124

    Article  PubMed  Google Scholar 

  • Boucher V, Buitink J, Lin X, Boudet J, Hoekstra FA, Hundertmark M, Renard D, Leprince O (2010) MtPM25 is an atypical hydrophobic late embryogenesis-abundant protein that dissociates cold and desiccation-aggregated proteins. Plant Cell Environ 33:418–430

    Article  PubMed  CAS  Google Scholar 

  • Boudet J, Buitink J, Hoekstra FA, Rogniaux H, Larre C, Satour P, Leprince O (2006) Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol 140:1418–1436

    Article  PubMed  CAS  Google Scholar 

  • Bradford NM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    PubMed  CAS  Google Scholar 

  • Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228

    Article  PubMed  CAS  Google Scholar 

  • Calcott PH, Wood D, Anderson L (1983) Freezing and thawing induced curing of drug-resistance plasmids from bacteria. Cryo Lett 4:99

    Google Scholar 

  • Chourey K, Ramani S, Apte SK (2003) Accumulation of LEA proteins in salt (NaCl) stressed young seedlings of rice (Oryza sativa L.) cultivar Bura Rata and their degradation during recovery from salinity stress. J Plant Physiol 160:1165–1174

    Article  PubMed  CAS  Google Scholar 

  • Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145

    Article  PubMed  CAS  Google Scholar 

  • Dure L III (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369

    Article  PubMed  CAS  Google Scholar 

  • Dure L III, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168

    Article  PubMed  CAS  Google Scholar 

  • Dure L III, Crouch M, Harada J, Ho T-HD, Mundy J, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12:475–486

    Article  CAS  Google Scholar 

  • Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. Mol Biol 338:1015–1026

    Article  CAS  Google Scholar 

  • Gao D, Critser JK (2000) Mechanisms of cryoinjury in living cells. ILAR J 41:187–196

    PubMed  CAS  Google Scholar 

  • George S, Usha B, Parida A (2009) Isolation and characterization of an atypical LEA protein coding cDNA and its promoter from drought-tolerant plant Prosopis juliflora. Appl Biochem Biotechnol 157:244–253

    Article  PubMed  CAS  Google Scholar 

  • Gilles GJ, Hines KM, Manfre AJ, Marcotte WR Jr (2007) A predicted N-terminal helical domain of a Group 1 LEA protein is required for protection of enzyme activity from drying. Plant Physiol Biochem 45:389–399

    Article  PubMed  CAS  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  PubMed  CAS  Google Scholar 

  • He JX, Fu JR (1996) The research progresses in Lea proteins of seeds. Plant Physiol Commun 32:241–246

    CAS  Google Scholar 

  • Hong-Bo S, Zong-Suo L, Ming-An S (2005) LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surf B Biointerfaces 45:131–135

    Article  PubMed  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118

    Article  PubMed  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Lee JH, Kim JJ, Kim CH, Jun SS, Hong YN (2005) Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum. Gene 344:115–123

    Article  PubMed  CAS  Google Scholar 

  • Kovacs DS, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Protein disorder prediction: implications for structural proteomics. Structure 11:1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zheng Y (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun 331:325–332

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Lu Z, Mao Z, Liu S (2009) Enhanced thermotolerance of E. coli by expressed OsHsp90 from rice (Oryza sativa L.). Curr Microbiol 58:129–133

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zheng Y, Zhang Y, Wang W, Li R (2010) Soybean PM2 protein (LEA3) confers the tolerance of Escherichia coli and stabilization of enzyme activity under diverse stresses. Curr Microbiol 60:373–378

    Article  PubMed  CAS  Google Scholar 

  • Maitra N, Cushman JC (1994) Isolation and characterization of a drought-induced soybean cDNA encoding a D95 family late-embryogenesis-abundant protein. Plant Physiol 106:805–806

    Article  PubMed  CAS  Google Scholar 

  • Mowla SB, Cuypers A, Driscoll SP, Kiddle G, Thomson J, Foyer CH, Theodoulou FL (2006) Yeast complementation reveals a role for an Arabidopsis thaliana late embryogenesis abundant (LEA)-like protein in oxidative stress tolerance. Plant J 48:743–756

    Article  PubMed  CAS  Google Scholar 

  • Park BJ, Liu ZC, Kanno A, Kameya T (2005) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of B. napus LEA gene. Plant Sci 169:553–558

    Article  CAS  Google Scholar 

  • Park SC, Kim YH, Jeong JC, Kim CY, Lee HS, Bang JW, Kwak SS (2011) Sweet potato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli. Planta 233:621–634

    Article  PubMed  CAS  Google Scholar 

  • Patil A, Nakamura H (2006) Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett 580:2041–2045

    Article  PubMed  CAS  Google Scholar 

  • Reyes JL, Campos F, Wei H, Arora R, Yang Y, Karlson D, Covarrubias A (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ 31:1781–1790

    Article  PubMed  CAS  Google Scholar 

  • Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt tolerance response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6:263–284

    Article  PubMed  CAS  Google Scholar 

  • Saitu N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tress. Mol Biol Evol 4:406–425

    Google Scholar 

  • Scoltis DE, Soltis P (2003) The role of phylogenetics in comparative genetics. Plant Physiol 132:1790–1800

    Article  Google Scholar 

  • Shoemaker BA, Portman JJ, Wolynes PG (2000) Speeding the molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci USA 97:8868–8873

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Cornilescu CC, Tyler RC, Cornilescu G, Tonelli M, Lee MS, Markley JL (2005) Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress protein. Protein Sci 14:2601–2609

    Article  PubMed  CAS  Google Scholar 

  • Sleight SC, Wigginton NS, Lenski RE (2006) Increased susceptibility to repeated freeze–thaw cycles in Escherichia coli following long-term evolution in a benign environment. BMC Evol Biol 6:104

    Article  PubMed  Google Scholar 

  • Soto A, Allona I, Collada C, Guevar MA, Casado R, Rodriguez-Cerezo E, Aragoncillo C, Gomez L (1999) Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol 120:521–528

    Article  PubMed  CAS  Google Scholar 

  • Su L, Zhao CZ, Bi YP, Wan SB, Xia H, Wang XJ (2011) Isolation and expression analysis of LEA genes in peanut (Arachis hypogaea L.). J Biosci 36:223–228

    Article  PubMed  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  PubMed  CAS  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  PubMed  CAS  Google Scholar 

  • Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544:196–206

    Article  PubMed  CAS  Google Scholar 

  • Zhang JF, Deng XP, Mu XQ (2002) Plant aquaporin. Plant Physiol Commun 38:88–91

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the China National Transgenic Major Program (2009ZX08009-109B) and the China Postdoctoral Science Foundation (No. 20070420717).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingzhang Hu.

Additional information

Communicated by R. Hagemann.

Nucleotide sequence data are available in the DDBJ/EMBL/GenBank databases under the accession number JF776156.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, S., Tan, L., Hu, Z. et al. Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L.. Mol Genet Genomics 287, 39–54 (2012). https://doi.org/10.1007/s00438-011-0660-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-011-0660-x

Keywords

Navigation