Skip to main content
Log in

Distant horizontal gene transfer is rare for multiple families of prokaryotic insertion sequences

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Horizontal gene transfer in prokaryotes is rampant on short and intermediate evolutionary time scales. It poses a fundamental problem to our ability to reconstruct the evolutionary tree of life. Is it also frequent over long evolutionary distances? To address this question, we analyzed the evolution of 2,091 insertion sequences from all 20 major families in 438 completely sequenced prokaryotic genomes. Specifically, we mapped insertion sequence occurrence on a 16S rDNA tree of the genomes we analyzed, and we also constructed phylogenetic trees of the insertion sequence transposase coding sequences. We found only 30 cases of likely horizontal transfer among distantly related prokaryotic clades. Most of these horizontal transfer events are ancient. Only seven events are recent. Almost all of these transfer events occur between pairs of human pathogens or commensals. If true also for other, non-mobile DNA, the rarity of distant horizontal transfer increases the odds of reliable phylogenetic inference from sequence data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ajioka J, Hartl D (1989) Population dynamics of transposable elements. In: Berg D, Howe M (eds) Mobile DNA. American Society for Microbiology Press, Washington, DC, pp 185–210

    Google Scholar 

  • Albritton W (1989) Biology of Haemophilus ducreyi. Microbiol Mol Biol Rev 53:377–389

    CAS  Google Scholar 

  • Anderson R, May R (1991) Infectious diseases of humans. Dynamics and control. Oxford University Press, Oxford, UK

    Google Scholar 

  • Arkhipova IR (2005) Mobile genetic elements and sexual reproduction. Cytogenet Genome Res 110:372–382

    Article  PubMed  CAS  Google Scholar 

  • Bartolome C, Maside X, Charlesworth B (2002) On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol Biol Evol 19:926–937

    PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Colladovides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    Article  PubMed  CAS  Google Scholar 

  • Blot M (1994) Transposable elements and adaptation of host bacteria. Genetica 93:5–12

    Article  PubMed  CAS  Google Scholar 

  • Brown JR (2003) Ancient horizontal gene transfer. Nat Rev Genet 4:121–132

    Article  PubMed  CAS  Google Scholar 

  • Brugger K, Redder P, She QX, Confalonieri F, Zivanovic Y, Garrett RA (2002) Mobile elements in archaeal genomes. FEMS Microbiol Lett 206:131–141

    Article  PubMed  CAS  Google Scholar 

  • Capy P, Gasperi G, Biemont C, Bazin C (2000) Stress and transposable elements: co-evolution or useful parasites? Heredity 85:101–106

    Article  PubMed  CAS  Google Scholar 

  • Chaillou S, Champomier-Verges MC, Cornet M, Crutz-Le Coq AM, Dudez AM, Martin V, Beaufils S, Darbon-Rongere E, Bossy R, Loux V, Zagorec M (2005) The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol 23:1527–1533

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Langley CH (1989) The population genetics of Drosophila transposable elements. Annu Rev Genet 23:251–287

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  • Choi IG, Kim SH (2007) Global extent of horizontal gene transfer. Proc Natl Acad Sci USA 104:4489–4494

    Article  PubMed  CAS  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Article  PubMed  CAS  Google Scholar 

  • Conant GC, Wagner A (2002) GenomeHistory: a software tool and its applications to fully sequenced genomes. Nucleic Acids Res 30:1–10

    Article  Google Scholar 

  • Cooper VS, Schneider M, Blot M, Lenski RE (2001) Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli. J Bacteriol 183:2834–2841

    Article  PubMed  CAS  Google Scholar 

  • Craig N, Craigie R, Gellert M, Lambowitz AL (eds) (2002) Mobile DNA II. ASM Press, Washington, DC

    Google Scholar 

  • Daubin V, Ochman H (2004) Quartet mapping and the extent of lateral transfer in bacterial genomes. Mol Biol Evol 21:86–89

    Article  PubMed  CAS  Google Scholar 

  • Daubin V, Moran N, Ochman H (2003) Phylogenetics and the cohesion of bacterial genomes. Science 301:829–832

    Article  PubMed  CAS  Google Scholar 

  • de la Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–133

    Article  Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm, and genome evolution. Nature 284:601–607

    Article  PubMed  CAS  Google Scholar 

  • Edwards RJ, Brookfield JFY (2003) Transiently beneficial insertions could maintain mobile DNA sequences in variable environments. Mol Biol Evol 20:30–37

    Article  PubMed  CAS  Google Scholar 

  • Fingerman EG, Dombrowski PG, Francis CA, Sniegowski PD (2003) Distribution and sequence analysis of a novel Ty3-like element in natural Saccharomyces paradoxus isolates. Yeast 20:761–770

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel DJ (2005) Genome evolution mediated by Ty elements in Saccharomyces. Cytogenet Genome Res 110:63–69

    Article  PubMed  CAS  Google Scholar 

  • Ge F, Wang LS, Kim J (2005) The cobweb of life revealed by genome-scale estimates of horizontal gene transfer. PLoS Biol 3:1709–1718

    Article  CAS  Google Scholar 

  • Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    Article  PubMed  CAS  Google Scholar 

  • Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL, Kinoshita R, Spratt BG (2003) Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholdefia mallei. J Clin Microbiol 41:4913 (vol 41, pg 2068, 2003)

    Article  CAS  Google Scholar 

  • Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003a) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003b) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hartl DL, Dykhuizen DE, Miller RD, Green J, de Framond J (1983) Transposable element IS50 improves growth rate of E. coli cells without transposition. Cell 35:503–510

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Kishino H, Yano TA (1985) Dating of the human ape splitting by a molecular clock of mitochondria. J Mol Evol 22:160–174

    Article  PubMed  CAS  Google Scholar 

  • Higgs P, Attwood T (2005) Bioinformatics and molecular evolution. Blackwell, Oxford, UK

    Google Scholar 

  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: Quantification and classification. Annu Rev Microbiol 55:709–742

    Article  PubMed  CAS  Google Scholar 

  • Kotiranta A, Lounatmaa K, Haapasalo M (2000) Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2:189–198

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG (2005) What tangled web: barriers to rampant horizontal gene transfer. Bioessays 27:741–747

    Article  PubMed  CAS  Google Scholar 

  • Lake JA, Jain R, Rivera MC (1999) Genomics—mix and match in the tree of life. Science 283:2027–2028

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG, Ochman H (2002) Reconciling the many faces of lateral gene transfer. Trends Microbiol 10:1–4

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG, Ochman H, Hartl DL (1992) The evolution of insertion sequences within enteric bacteria. Genetics 131:9–20

    PubMed  CAS  Google Scholar 

  • Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3:e130

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Bork P (2007) Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128

    Article  PubMed  CAS  Google Scholar 

  • Li W-H (1997) Molecular evolution. Sinauer, MA, USA

    Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    PubMed  CAS  Google Scholar 

  • Maside X, Assimacopoulos S, Charlesworth B (2000) Rates of movement of transposable elements on the second chromosome of Drosophila melanogaster. Genet Res 75:275–284

    Article  PubMed  CAS  Google Scholar 

  • Maside X, Assimacopoulos S, Charlesworth B (2005) Fixation of transposable elements in the Drosophila melanogaster genome. Genet Res 85:195–203

    Article  PubMed  CAS  Google Scholar 

  • Naas T, Blot M, Fitch WM, Arber W (1994) Insertion sequence-related genetic variation in resting Escherichia coli K-12. Genetics 136:721–730

    PubMed  CAS  Google Scholar 

  • Nagy Z, Chandler M (2004) Regulation of transposition in bacteria. Res Microbiol 155:387–398

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36:760–766

    Article  PubMed  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson LD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence J, Groisman E (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Lerat E, Daubin V (2005) Examining bacterial species under the specter of gene transfer and exchange. Proc Natl Acad Sci USA 102:6595–6599

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  PubMed  CAS  Google Scholar 

  • Pasyukova EG, Nuzhdin SV, Morozova TV, Mackay TFC (2004) Accumulation of transposable elements in the genome of Drosophila melanogaster is associated with a decrease in fitness. J Hered 95:284–290

    Article  PubMed  CAS  Google Scholar 

  • Petrov DA, Aminetzach YT, Davis JC, Bensasson D, Hirsh AE (2003) Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. Mol Biol Evol 20:880–892

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Douady CJ (2003) Horizontal gene transfer and phylogenetics. Curr Opin Microbiol 6:498–505

    Article  PubMed  CAS  Google Scholar 

  • Ragan MA (2001) Detection of lateral gene transfer among microbial genomes. Curr Opin Genet Dev 11:620–626

    Article  PubMed  CAS  Google Scholar 

  • Ryan K, Ray C (eds) (2004) Sherris medical microbiology. McGraw Hill, New York

    Google Scholar 

  • Sanchez-Gracia A, Maside X, Charlesworth B (2005) High rate of horizontal transfer of transposable elements in Drosophila. Trends Genet 21:200–203

    Article  PubMed  CAS  Google Scholar 

  • Sawyer S, Hartl DL (1986) Distribution of transposable elements in prokaryotes. Theor Popul Biol 30:1–16

    Article  PubMed  CAS  Google Scholar 

  • Schneider D, Lenski RE (2004) Dynamics of insertion sequences elements during experimental evolution of bacteria. Res Microbiol 155:319–327

    Article  PubMed  CAS  Google Scholar 

  • Siguier P, Filee J, Chandler M (2006a) Insertion sequences in prokaryotic genomes. Curr Opin Microbiol 9:526–531

    Article  PubMed  CAS  Google Scholar 

  • Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M (2006b) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res (Database issue) 34:D34–D36

    Article  CAS  Google Scholar 

  • Snel B, Bork P, Huynen MA (1999) Genome phylogeny based on gene content. Nat Genet 21:108–110

    Article  PubMed  CAS  Google Scholar 

  • Sorek R, Zhu YX, Creevey C, Francino M, Bork P, Rubin E (2007) Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318(5855):1449–1452

    Article  PubMed  CAS  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting; position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Toleman MA, Bennett PM, Walsh TR (2006) ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev 70(2):296–316

    Article  PubMed  CAS  Google Scholar 

  • Touchon M, Rocha EPC (2007) Causes of insertion sequences abundance in prokaryotic genomes. Mol Biol Evol 24:969–981

    Article  PubMed  CAS  Google Scholar 

  • Treves DS, Manning S, Adams J (1998) Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. Mol Biol Evol 15:789–797

    PubMed  CAS  Google Scholar 

  • Vieira C, Biemont C (2004) Transposable element dynamics in two sibling species: Drosophila melanogaster and Drosophila simulans. Genetica 120:115–123

    Article  PubMed  CAS  Google Scholar 

  • Vieira C, Nardon C, Arpin C, Lepetit D, Biemont C (2002) Evolution of genome size in Drosophila. Is the invader’s genome being invaded by transposable elements? Mol Biol Evol 19:1154–1161

    PubMed  CAS  Google Scholar 

  • Vonsternberg RM, Novick GE, Gao GP, Herrera RJ (1992) Genome canalization: the coevolution of transposable and interspersed repetitive elements with single copy DNA. Genetica 86:215–246

    Article  CAS  Google Scholar 

  • Wagner A (2006) Periodic extinctions of transposable elements in bacterial lineages: evidence from intragenomic variation in multiple genomes. Mol Biol Evol 23:723–733

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Lewis C, Bichsel M (2007) A survey of bacterial insertion sequences using IScan. Nucleic Acids Res 35:5284–5293

    Article  PubMed  CAS  Google Scholar 

  • Wilke CM, Adams J (1992) Fitness effects of Ty transposition in Saccharomyces cerevisiae. Genetics 131:31–42

    PubMed  CAS  Google Scholar 

  • Witherspoon DJ, Robertson HM (2003) Neutral evolution of ten types of mariner transposons in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae. J Mol Evol 56:751–769

    Article  PubMed  CAS  Google Scholar 

  • Zeyl C, Bell G, Green DM (1996) Sex and the spread of retrotransposon Ty3 in experimental populations of Saccharomyces cerevisiae. Genetics 143:1567–1577

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support through SNF grant 315200-116814 is gratefully acknowledged. We thank C. Lewis for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Wagner.

Additional information

Communicated by D. Ussery.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1:

Two phylogenetic signatures of horizontal gene transfer are a) phylogeneticincongruence of species and gene tree (or of two gene trees), b) patchy phylogeneticdistribution, where ISs occur only in a small number of distantly related clades on a muchlarger tree. Red arrows indicate hypothetical horizontal transfer events. (PDF 8 kb)

Figure S2:

a) Distribution of pairwise 16S rDNA divergence (fraction of differingnucleotides) among the genomes studied here. Note the scale break on the vertical axis.b) Distribution of synonymous divergence Ks for ISs that occur in different genomes,where Ks<1 (pooled for all IS families). The inset shows the same distribution, but alsofor extremely divergent IS pairs, where Ks>1, and where Ks for individual pairs cannot bereliably estimated, because of this much greater divergence. Note the logarithmic scale onthe inset’s vertical axis.(PDF 19 kb)

Figure S3:

Pruned maximum likelihood 16S rDNA prokaryotic trees showing onlyselected clades and ISs. Lengths of bars indicate IS numbers per genome, with colorscoded as in Figure 1. a) IS1 in the Escherichia coli/Shigella clade. b) IS110 inBurkholderia spp. Numerical values printed on branches correspond to boostrap values.Note the low bootstrap support for multiple clades. The phylogenies of these genomes cannot be resolved with 16S rDNA, and neither can therefore individual horizontal genetransfer events. These examples are representative of all other ISs: we did not find asingle phylogenetically well-resolved clade of closely related bacterial species wheremultiple members contained ISs of a given family. Multi-locus approaches can resolvesuch local clades (Godoy et al. 2003), but they are too computationally costly to apply tothe large number of genomes we study. Trees are displayed with ITOL (Letunic and Bork2007).(PDF 520 kb)

Figure S4

a). Hypothetical phylogeny of ISs in a genome where an IS from the samefamily entered the genome in three independent transfer events (T1, T2, T3). If an amountof time elapses between transfer events that is much greater than the rate at whichnucleotide changes accumulate in ISs, then such transfer events could be distinguished bythree well-separated within-genome IS clades. b) Phylogeny of IS982, which occurs onlyin 2 subspecies of Lactococcus lactis. Note the poor separation of different IS clades, andthe low boostrap values on many branches. The poorly resolved phylogeny is due to thehigh similarity of IS982 elements (mean / maximum Ks of all IS982 pairs within agenome: 0.016/0.017; n=1132). c) Histogram of the maximal within-genomesynonymous divergence Ks,max for all IS families and all genomes that contain at least oneIS pair of a given family. The arrows connecting the distant branches on the tree in theinset indicate that Ks,max is calculated from the most highly diverged ISs within a genome.Of the 116 values plotted here, only 6% (7/116) of genomes contain ISs with saturatedsynonymous divergence Ks. These are included in the right-most bar of the histogram (Ks,max>1). The median (mean, standard deviation) of Ks, max is 0.0087 (0.17, 0.41).(PDF 636 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, A., de la Chaux, N. Distant horizontal gene transfer is rare for multiple families of prokaryotic insertion sequences. Mol Genet Genomics 280, 397–408 (2008). https://doi.org/10.1007/s00438-008-0373-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0373-y

Keywords

Navigation