Skip to main content
Log in

Identification and characterization of piggyBac-like elements in the genome of domesticated silkworm, Bombyx mori

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

piggyBac is a short inverted terminal repeat (ITR) transposable element originally discovered in Trichoplusia ni. It is currently the preferred vector of choice for enhancer trapping, gene discovery and identifying gene function in insects and mammals. Many piggyBac-like sequences have been found in the genomes of phylogenetically species from fungi to mammals. We have identified 98 piggyBac-like sequences (BmPBLE1-98) from the genome data of domesticated silkworm (Bombyx mori) and 17 fragments from expressed sequence tags (ESTs). Most of the BmPBLE1-98 probably exist as fossils. A total of 21 BmPBLEs are flanked by ITRs and TTAA host dinucleotides, of which 5 contain a single ORF, implying that they may still be active. Interestingly, 16 BmPBLEs have CAC/GTG not CCC/GGG as the characteristic residues of ITRs, which is a surprising phenomenon first observed in the piggyBac families. Phylogenetic analysis indicates that many BmPBLEs have a close relation to mammals, especially to Homo sapiens, only a few being grouped with the T. ni piggyBac element. In addition, horizontal transfer was probably involved in the evolution of the piggyBac-like elements between B. mori and Daphnia pulicaria. The analysis of the BmPBLEs will contribute to our understanding of the characteristic of the piggyBac family and application of piggyBac in a wide range of insect species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen ML, Handler AM, Berkebile DR, Skoda SR (2004) piggyBac transformation of the New World screwworm, Cochliomyia hominivorax, produces multiple distinct mutant strains. Med Vet Entomol 18(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • de Almeida LM, Carareto CM (2005) Multiple events of horizontal transfer of the Minos transposable element between Drosophila species. Mol Phylogenet Evol 35:583–594

    Article  PubMed  Google Scholar 

  • Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Arkhipova IR, Meselson M (2005) Diverse DNA transposons in rotifers of the class Bdelloidea. Proc Natl Acad Sci USA 102(33):11781–11786

    Article  PubMed  CAS  Google Scholar 

  • Berghammer AJ, Klinger M, Wimmer EA (1999) A universal marker for transgenic insects. Nature 402:370–371

    Article  PubMed  CAS  Google Scholar 

  • Bharath B, Shoue DA, Fraser MJ Jr, Adams JH (2005) High-efficiency transformation of Plasmodium falciparum by the lepidopteran transposable element piggyBac. PNAS 102(45):16391–16396

    Article  Google Scholar 

  • Cary LC, Goebel M, Corsaro HH, Wang HH, Rosen E, Fraser MJ (1989) Transposon mutagenesis of baculoviruses: analysis of T. ni transposon IFP2 insertions within the FP-Locus of nuclear polyhedrosis viruses. Virology 161:8–17

    Google Scholar 

  • Clark JB, Maddison WP, Kidwell MJ (1994) Phylogenetic analysis supports horizontal transfer of P transposable elements. Mol Biol Evol 11(1):40–50

    PubMed  CAS  Google Scholar 

  • Coates CJ, Turney CL, Frommer M, O’Brochta DA, Warren WD, Atkinson PW (1995) The transposable element mariner can excise in non-drosophilid insects. Mol Gen Genet 249:246–252

    Article  PubMed  CAS  Google Scholar 

  • Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122(3):473–483

    Article  PubMed  CAS  Google Scholar 

  • Elick TA, Lobo N, Fraser MJ (1997) Analysis of cis-acting DNA elements required for piggyBac transposable element excision. Mol Gen Genet 255:605–610

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) vesion3.6. Department of Genome Sciences and Department of Biology, University of Washington, Seattle, WA.USA

  • Fraser MJ (2000) The TTAA-specific family of transposable elements: identification, functional characterization, and utility for transformation of insects. In: Handler AM, James AA (eds) Insect transgenesis. CRC Press, Boca Raton, pp 249–268

    Google Scholar 

  • Fraser MJ, Cary L, Boonvisudhi K, Wang HG (1995) Assay for movement of lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology 211:397–407

    Article  PubMed  CAS  Google Scholar 

  • Fraser MJ, Ciszczon T, Elick T, Bauser C (1996) Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol 5:141–151

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Estevez C, Momose T, Gehring WJ, Salo E (2003) Transgenic planarian lines obtained by electroporation using transposon-derived vectors and an eye-specific GFP marker. Proc Natl Acad Sci USA 100(24):14046–14051

    Article  PubMed  CAS  Google Scholar 

  • Grossman GL, Rafferty CS, Clayton JR, Stevens TK, Mukabayire O, Benedict MQ (2001) Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol 10:597–604

    Article  PubMed  CAS  Google Scholar 

  • Handler AM, Harrell RA (1999) Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol Biol 8:449–457

    Article  PubMed  CAS  Google Scholar 

  • Handler AM, Harrell RA (2001) Transformation of the Caribbean fruit fly, Anastrepha suspensa, with a piggyBac vector marked with polyubiquitin-regulated GFP. Insect Biochem Mol Biol 31(2):199–205

    Article  PubMed  CAS  Google Scholar 

  • Handler AM, McCombs SD (2000) The piggyBac transposon mediates germ-line transformation in the Oriental fruit fly and closely related elements exist in its genome. Insect Mol Biol 9:605–612

    Article  PubMed  CAS  Google Scholar 

  • Handler AM, McCombs SD, Fraser MJ, Saul SH (1998) The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Genetics 95:7520–7525

    CAS  Google Scholar 

  • Haniford D, Kleckner N (1994) Tn10 transposition in vivo: temporal separation of cleavages at the two transposon ends and roles of terminal basepairs subsequent to interaction of ends. EMBO J 13:3401–3411

    PubMed  CAS  Google Scholar 

  • Hediger M, Niessen M, Wimmer EA, Dubendorfer A, Bopp D (2001) Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Mol Biol 10(2):113–119

    Article  PubMed  CAS  Google Scholar 

  • Heinrich JC, Li X, Henry RA, Haack N, Stringfellow L, Heath AC, Scott MJ (2002) Germ-line transformation of the Australian sheep blowfly Lucilia cuprina. Insect Mol Biol 11(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O’Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149

    Article  PubMed  CAS  Google Scholar 

  • Horn C, Offen N, Nystedt S, Hacker U, Wimmer EA (2003) piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics 163:647–661

    PubMed  CAS  Google Scholar 

  • Huisman O, Errada PR, Signon L, Kleckner N (1989) Mutational analysis of IS10’s outside end. EMBO J 8:2101–2109

    PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  • Jiang RH, Dawe AL, Weide R, van Staveren M, Peters S, Nuss DL, Govers F (2005) Elicitin genes in Phytophthora infestans are clustered and interspersed with various transposon-like elements. Mol Genet Genomics 273:20–32

    Article  PubMed  CAS  Google Scholar 

  • Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, Frise E, Wheeler DA, Lewis SE, Rubin GM, Ashburner M, Celniker SE (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol 3(12): RESEARCH0084

    Google Scholar 

  • Kokoza V, Ahmed A, Wimmer EA, Raikhel AS (2001) Efficient transformation of the yellow fever mosquito Aedes aegypti using the piggybac transposable element vector pBac[3Xp3-EGFP afm]. Insect Biochem Mol Biol 31:1137–1143

    Article  PubMed  CAS  Google Scholar 

  • Li X, Lobo N, Bauser CA, Fraser MJ (2001) The minimum internal and external sequence requirements for transposition of the eukaryotic transformation vector piggyBac. Mol Genet Genomics 266:190–198

    Article  PubMed  CAS  Google Scholar 

  • Lobo N, Li X, Fraser MJ (1999) Transposition of the piggyBac element in embryos of Drosophlia melanogaster, Aedes aegypti and Trichoplusia ni. Mol Gen Genet 261:803–810

    Article  PubMed  CAS  Google Scholar 

  • Mandrioli M, Wimmer EA (2003) Stable transformation of a Mamestra brassicae (lepidoptera) cell line with the lepidopteran-derived transposon piggyBac. Insect Biochem Mol Biol 33(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Marcus JM, Ramos DM, Monteiro A (2004) Germline transformation of the butterfly Bicyclus anynana. Proc Biol Sci 271(Suppl 5):S263–S265

    Article  PubMed  Google Scholar 

  • Masafumi Yamamoto, Masafumi Yamao, Hiroshi Nishiyama, Shinya Sugihara, Sumiharu Nagaoka, Masahiro Tomita, Katsutoshi Yoshizato, Toshiki Tamura, Hajime Mori (2004) New and highly efficient method for silkworm transgenesis using autographa californica nucleopolyhedrovirus and piggyBac transposable elements. Biotechnol Bioeng 88(7):849–853

    Article  PubMed  Google Scholar 

  • Matuyama K, Hartl DL (1991) Evidence for interspecific transfer of the transposable element mariner between Drosophila and Zaprionus. J Mol Evol 33:514–524

    Article  Google Scholar 

  • Michael JL (2001) A family of Tc1-like transposons from the genomes of fishes and frogs: evidence for horizontal transmission. Gene 271:203–214

    Article  Google Scholar 

  • Nolan T, Bower TM, Brown AE, Crisanti A, Catteruccia F (2002) piggyBac-mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker. J Biol Chem 277:8759–8762

    Article  PubMed  CAS  Google Scholar 

  • O’Brochta DA, Atkinson PW (1996) Transposable elements and gene transformation in non-drosophilid insects. Insect Biochem Mol Biol 26:739–753

    Article  PubMed  CAS  Google Scholar 

  • Osada N, Hirata M, Tanuma R, Kusuda J, Hida M, Suzuki Y, Sugano S, Gojobori T, Shen CK, Wu CI, Hashimoto K (2005) Substitution rate and structural divergence of 5’UTR evolution: comparative analysis between human and cynomolgus monkey cDNAs. Mol Biol Evol 22(10):1976–1982

    Article  PubMed  CAS  Google Scholar 

  • Peloquin JJ, Thibault ST, Staten R, Miller TA (2000) Germ-line transformation of pink bollworm (Lepidoptera: Gelechiidae) mediated by the piggyBac transposable element. Insect Mol Biol 9:323–333

    Article  PubMed  CAS  Google Scholar 

  • Penton EH, Sullender BW, Crease TJ (2002) Pokey, a new DNA transposon in Daphnia (Cladocera: Crustacea). J Mol Evol 55:664–673

    Article  PubMed  CAS  Google Scholar 

  • Perera OP, Harrell RA II, Handler AM (2002) Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Mol Biol 11(4):291–297

    Article  PubMed  CAS  Google Scholar 

  • Pritham EJ, Feschotte C, Wessler SR (2005) Unexpected diversity and differential success of DNA transposons in four species of Entamoeba protozoans. Mol Biol Evol 22(9):1751–1763

    Article  PubMed  CAS  Google Scholar 

  • Rio DC (1990) Molecular mechanisms regulating Drosophila P element transposition. Annu Rev Genet 24:543–578

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM (2002) Evolution of DNA transposons in eukaryotes. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington D.C., pp 1093–1110

    Google Scholar 

  • Sarkar A, Sim C, Hong YS, Hogan JR, Fraser MJ, Robertson HM, Collins FH (2003) Molecular evolutionary analysis of the widespread piggyBac transposon family and related “domesticated” sequences. Mol Genet Genomics 270:173–180

    Article  PubMed  CAS  Google Scholar 

  • Shinmyo Y, Mito T, Matsushita T, Sarashina I, Miyawaki K, Ohuchi H, Noji S (2004) piggyBac-mediated somatic transformation of the two-spotted cricket, Gryllus bimaculatus. Dev Growth Differ 46(4):343–349

    Article  PubMed  CAS  Google Scholar 

  • Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, BhatNK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madan A, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99(26):16899–16903

    Article  PubMed  Google Scholar 

  • Sumitani M, Yamamoto DS, Oishi K, Lee JM, Hatakeyama M (2003) Germline transformation of the sawfly, Athalia rosae (Hymenoptera: Symphyta), mediated by a piggyBac-derived vector. Insect Biochem Mol Biol 33:449–458

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84

    Article  PubMed  CAS  Google Scholar 

  • Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM, Buchholz R, Demsky M, Fawcett R, Francis-Lang HL, Ryner L, Cheung LM, Chong A, Erickson C, Fisher WW, Greer K, Hartouni SR, Howie E, Jakkula L, Joo D, Killpack K, Laufer A, Mazzotta J, Smith RD, Stevens LM, Stuber C, Tan LR, Ventura R, Woo A, Zakrajsek I, Zhao L, Chen F, Swimmer C, Kopczynski C, Duyk G, Winberg ML, Margolis J (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36(3):211–212

    Article  Google Scholar 

  • Thomas JL, Rocha MD, Besse A, Mauchamp B, Chavancy G (2002) 3 × P3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards. Insect Biochem Mol Biol 32:247–253

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Wang J, Xia Q, He X, Dai M, Ruan J, Chen J, Yu G, Yuan H, Hu Y, Li R, Feng T, Ye C, Lu C, Wang J, Li S, Wong GK, Yang H, Wang J, Xiang Z, Zhou Z, Yu J (2005) SilkDB: a knowledgebase for silkworm biology and genomics. Nucleic Acids Res 33:D399–D402

    Article  PubMed  CAS  Google Scholar 

  • Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, Pan G, Xu J, Liu C, Lin Y, Qian J, Hou Y, Wu Z, Li G, Pan M, Li C, Shen Y, Lan X, Yuan L, Li T, Xu H, Yang G, Wan Y, Zhu Y, Yu M, Shen W, Wu D, Xiang Z, Yu J, Wang J, Li R, Shi J, Li H, Li G, Su J, Wang X, Li G, Zhang Z, Wu Q, Li J, Zhang Q, Wei N, Xu J, Sun H, Dong L, Liu D, Zhao S, Zhao X, Meng Q, Lan F, Huang X, Li Y, Fang L, Li C, Li D, Sun Y, Zhang Z, Yang Z, Huang Y, Xi Y, Qi Q, He D, Huang H, Zhang X, Wang Z, Li W, Cao Y, Yu Y, Yu H, Li J, Ye J, Chen H, Zhou Y, Liu B, Wang J, Ye J, Ji H, Li S, Ni P, Zhang J, Zhang Y, Zheng H, Mao B, Wang W, Ye C, Li S, Wang J, Wong GK, Yang H (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306:1937–1940

    Article  PubMed  Google Scholar 

  • Zimowska GJ, Handler AM (2006) Highly conserved piggyBac elements in noctuid species of Lepidoptera. Insect Biochem Mol Biol (in press)

Download references

Acknowledgements

This work were supported by the National Basic Research Program of China and National 863 project under grant no. 2005CB121000, 2004AA2Z1020 and 2005BA711A07, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-You Xia.

Additional information

Communicated by G. Reuter

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, HF., Xia, QY., Liu, C. et al. Identification and characterization of piggyBac-like elements in the genome of domesticated silkworm, Bombyx mori . Mol Genet Genomics 276, 31–40 (2006). https://doi.org/10.1007/s00438-006-0124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0124-x

Keywords

Navigation