Skip to main content
Log in

Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Fine mapping and positional cloning will eventually improve with the anchoring of additional markers derived from genomic clones such as BACs. From 2,603 new BAC-end genomic sequences from Gossypium hirsutum Acala ‘Maxxa’, 1,316 PCR primer pairs (designated as MUSB) were designed to flank microsatellite or simple sequence repeat motif sequences. Most (1164 or 88%) MUSB primer pairs successfully amplified DNA from three species of cotton with an average of three amplicons per marker and 365 markers (21%) were polymorphic between G. hirsutum and G. barbadense. An interspecific RIL population developed from the above two entries was used to map 433 marker loci and 46 linkage groups with a genetic distance of 2,126.3 cM covering approximately 45% of the cotton genome and an average distance between two loci of 4.9 cM. Based on genome-specific chromosomes identified in G. hirsutum tetraploid (A and D), 56.9% of the coverage was located on the A subgenome while 39.7% was assigned to the D subgenome in the genetic map, suggesting that the A subgenome may be more polymorphic and recombinationally active than originally thought. The linkage groups were assigned to 23 of the 26 chromosomes. This is the first genetic map in which the linkage groups A01 and A02/D03 have been assigned to specific chromosomes. In addition the MUSB-derived markers from BAC-end sequences markers allows fine genetic and QTL mapping of important traits and for the first time provides reconciliation of the genetic and physical maps. Limited QTL analyses suggested that loci on chromosomes 2, 3, 12, 15 and 18 may affect variation in fiber quality traits. The original BAC clones containing the newly mapped MUSB that tag the QTLs provide critical DNA regions for the discovery of gene sequences involved in biological processes such as fiber development and pest resistance in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Anderson CG (1999) Cotton marketing. In: Smith CW, Cothren JT (eds) Cotton; origin, history, technology, and production. Wiley, New York, pp 659–679

    Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage map. Genome 36:181–186

    CAS  Google Scholar 

  • Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing RA, Wilkins TA (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 54:911–929

    Article  PubMed  CAS  Google Scholar 

  • Boissinot S, Entezam A, Young L, Munson PJ, Furano AV (2004) The insertional history of an active family of L1 retrotransposons in humans. Genome Res 14:1221–1231

    Article  PubMed  CAS  Google Scholar 

  • Bolek Y, Kamal M El-Zik, Pepper AE, Bell AA, Magill CW, Thaxton PM, Reddy OUK (2005) Mapping of verticillium wilt resistance genes in cotton. Plant Sci 168:1581–1590

    Article  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Brubaker CL, Paterson AH, Wendell JF (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203

    Article  CAS  Google Scholar 

  • Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847–854

    PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative traits mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • De Kock MJD, Brandwagt BF, Bonnema G, de Wit PJGM, Lindhout P (2005) The tomato Orion locus comprises a unique class of Hcr9 genes. Mol Breed 15:409–422

    Article  Google Scholar 

  • Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2:108–165

    Google Scholar 

  • Gill KS, Bill BS, Endo TR, Taylor T (1996) Identification and high density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144:1883–1891

    PubMed  CAS  Google Scholar 

  • Gonzalez J, Nefedov M, Bosdet I, Casals F, Calvete O, Delprat A, Shin H, Readman C, Mathewson C, Wye N, Hoskins RA, Schein JE, deJong P, Ruiz A (2005) A BAC-based physical map of the Drosophila buzzatii genome. Genome Res 15:885–892

    Article  PubMed  CAS  Google Scholar 

  • Gregory SR, Hernandez E, Savoy BR (1999) Cottonseed processing. In: Smith CW, Cothren JT (eds) Cotton; origin, history, technology, and production. Wiley, New York, pp 793–823

    Google Scholar 

  • Gupta PK, Balyan HS, Sharma PC, Ramesh B (1996) Microsatellites in plants: a new class of molecular markers. Current Sci 70:45–53

    CAS  Google Scholar 

  • Han Z, Guo W, Song X, Zhang T (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics 272:308–327

    Article  PubMed  CAS  Google Scholar 

  • Hof JV, Saha S (1997) Cotton fibers can undergo cell division. Am J Bot 84(9):1231–1235

    Article  Google Scholar 

  • Hong CP, Lee SJ, Park JY, Plaha P, Park YS, Lee YK, Choi JE, Kim KY, Lee JH, Lee J, Jin H, Choi SR, Lim YP (2004) Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Mol Genet Genomics 271:709–716

    Article  PubMed  CAS  Google Scholar 

  • Islam-Faradi MN, Childs KL, Klein PE, Hodnett G, Menz MA, Klein RR, Rooney WL, Mullet JE, Stelly DM (2002) A molecular cytogenetic map of sorghum chromosome 1. Fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161:345–353

    Google Scholar 

  • Jiang C, Wright RJ, El-Zik KM, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci 95:4419–4424

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R (2005) FastPCR: a PCR primer design and repeat sequence searching software with additional tools for the manipulation and analysis of DNA and protein (http://www.biocenter.helsinki.fi/bi/programs/fastpcr.htm)

  • Kilian A, Chen J, Han F, Steffenson B, Kleinhofs A (1997) Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol 35:187–195

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Phys 127:1361–1366

    Article  CAS  Google Scholar 

  • Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Molecular cytogenetic maps of Sorghum linkage groups 2 and 8. Genetics 169:955–965

    Article  PubMed  CAS  Google Scholar 

  • Kohel RJ, Yu J, Park Y-H, Lazo GR (2001) Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica 121:163–172

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lacape J-M, Nguyen T-B (2005) Mapping quantitative trait loci associated with leaf and stem pubescence in cotton. J Hered 96(4):441–444

    Article  PubMed  CAS  Google Scholar 

  • Lacape J-M, Nguyen T-B, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome 46:612–626

    Article  PubMed  CAS  Google Scholar 

  • La Rota M, Kantety RV, Yu J-K, Sorrells ME (2005) Nonrandom distribution and frequencies of genomic and EST-derived microsatellites markers in rice, wheat, and barley. BMC Genomics 6:23 (http://www.biomedcentral.com/1471-2164/6/23) DOI: 10.1186/1471-2164-6-23

  • Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart J McD (2005) Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed 124:180–187

    Article  CAS  Google Scholar 

  • Liu S, Saha S, Stelly D, Burr B, Cantrell RG (2000) Chromosomal assignment of microsatellite loci in cotton. J Hered 91:326–332

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Wood TC, Yu Y, Budiman MA, Tomkins J, Woo S, Sasinowski M, Presting G, Frisch D, Goff S, Dean RA, Wing RA (2000) Rice transposable elements: a survey of 73,000 sequence-tagged-connectors. Genome Res 10:982–990

    Article  PubMed  CAS  Google Scholar 

  • Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ (2004) Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108:280–291

    Article  PubMed  CAS  Google Scholar 

  • Metzgar D, Bytof J, Wills C (2000) Selection against frameshift mutation limits microsatellite expansion in coding DNA. Genome Res 10:72–80

    PubMed  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genet 30:194–200

    Article  PubMed  CAS  Google Scholar 

  • Nievergelt CM, Smith DW, Kohlenberg JB, Schork NJ (2004) Large-scale integration of human genetic and physical maps. Genome Res 14:1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TB, Giband M, Brottier P, Risterucci A-M, Lacape J-M (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175

    Article  PubMed  CAS  Google Scholar 

  • Palmer MB, Main D, Frelichowski JE, Tomkins JP, Ulloa M (2004) High-throughput development of new molecular markers for cotton. National Cotton Council Beltwide Cotton Conference p 1131

  • Park Y-H, Alabady MS, Ulloa M, Sickler B, Wilkins TA, Yu J, Stelly DM, Kohel RJ, El-Shihy OM, Cantrell RG (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred (RIL) cotton population. Mol Genet Genomics 274:428–441

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH (2002) What has QTL mapping taught us about plant domestication. New Phytol 154:591–608

    Article  CAS  Google Scholar 

  • Percival AE, Wendel JF, Stewart JM (1999) Taxonomy and germplasm resources. In: Smith CW, Cothren JT (eds) Cotton; origin, history, technology, and production. Wiley, New York, pp 33–63

    Google Scholar 

  • Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360–369

    Article  PubMed  CAS  Google Scholar 

  • Qureshi SN, Saha S, Kantety RV, Jenkins JN (2004) EST-SSR: a new class of genetic markers in cotton. J Cotton Sci 8:112–123

    CAS  Google Scholar 

  • Reinisch A, Dong J-M, Brubaker C, Stelly D, Wendel J, Paterson AH (1994) A detailed RFLP map of cotton (Gossypium hirsutum × G. barbadense); chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847

    PubMed  CAS  Google Scholar 

  • Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding X, Garza JJ, Marler BS, Park C, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417

    Article  PubMed  CAS  Google Scholar 

  • Rong J, Bowers JE, Schulze SR, Waghmare VN, Rogers CJ, Pierce GJ, Zhang H, Estill JC, Paterson AH (2005) Comparative genomics of Gossypium and Arabidopsis: unraveling the consequences of both ancient and recent polyploidy. Genome Res 15:1198–1210

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols, in the series methods in molecular biology. Humana Press, pp 365–386. Code available at http://www.fokker.wi.mit.edu/primer3/

  • Saha S, Karaca M, Jenkins JN, Zipf AE, Reddy OUK, Kantety RV (2003) Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica 130:355–364

    Article  CAS  Google Scholar 

  • Shen X, Guo W, Zhu X, Yuan Y, Yu JZ, Kohel RJ, Zhang T (2005) Molecular mapping of QTLs for qualities in three diverse lines in Upland cotton using SSR markers 15:169–181

  • Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachirii Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci 89:8794–8797

    Article  PubMed  CAS  Google Scholar 

  • Song X, Wang K, Guo W, Zhang J, Zhang T (2005) A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L. Genome 48:378–390

    Article  PubMed  CAS  Google Scholar 

  • Stam P, Van Ooijen JW (1995) JoinMap™ version 2.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen

    Google Scholar 

  • Stelly DM (1993) Interfacing cytogenetics with the cotton genome mapping effort. In: Herber DJ, Richter DA (eds) Beltwide Cotton Conference, January 10–14, 1993, New Orleans, LA. Memphis, TN: National Cotton Council of America; pp 1545–1550

  • Taliercio EW, Ulloa M (2003) The DNA sequence of a Gypsy element from Gossypium hirsutum L. and characterization of Gypsy elements in three Gossypium species. DNA sequence V 14(4):319–325

    Article  CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roeder MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Tautz D, Schotterer C (1994) Simple sequences. Curr Opin Genet 4:832–837

    Article  CAS  Google Scholar 

  • Tomkins JP, Peterson DG, Yang TJ, Main D, Wilkins TA, Paterson AH, Wing RA (2001) Development of genomic resources for cotton (Gossypium hirsutum L.): BAC library construction, preliminary STC analysis, and identification of clones associated with fiber development. Mol Breed 8(3):255–261

    Article  CAS  Google Scholar 

  • Ulloa M, Meredith WR Jr (2000) Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. J Cotton Sci 4:161–170

    CAS  Google Scholar 

  • Ulloa M, Meredith WR Jr, Shappley ZW, Kahler AL (2002) RFLP genetic linkage maps from F2.3 populations and a joinmap of Gossypium hirsutum L. Theor Appl Genet 104:200–208

    Article  PubMed  CAS  Google Scholar 

  • Ulloa M, Stewart J McD, Garcia CE, Godoy AS, Gaytan-MA, Acosta-NS (2006) Cotton genetic resources in the western states of Mexico; In situ conservation status and germplasm collection for ex situ preservation. Genet Resour Crop Evol (in press). DOI 10.1007/s10722-004-2988-0

  • Ulloa M, Saha S, Jenkins JN, Meredith WR, McCarty JC, Stelly MD (2005) Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) joinmap. J Hered 96:132–144

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Maliepaard C (1996) MapQTL™ Version 3.0, software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Wang J-W, Yu N, Li C-H, Luo B, Gou J-Y, Wang L-J, Chen X-Y (2004) Control of plant trichome development by a cotton fiber MYB gene. The Plant Cell 16:2323–2334

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Ulloa M, Roberts PA (2005) Identification and mapping of microsatellite markers linked to the root-knot nematode resistance gene rkn1 in Acala NemX (Gossypium hirsutum L.). Theor Appl Genet (in press) DOI:10.1007/S00122-005-0183

  • Wilkins TA, Arpat AB (2005) The cotton fiber transcriptome. Physiologia Plantarum 124:295–300

    Article  CAS  Google Scholar 

  • Yu, J, Kohel RJ, Xu Z, Dong J, Zhang H, Stelly DM, Zhu Y, Covaleda L (2005) Physical mapping of fiber development genes in cotton [abstract]. Plant And Animal Genome XIII Conference p 225

  • Zaki EA, Ghany AAA (2004) Ty3/gypsy retro-transposons in Egyptian cotton (G. barbadense). J Cotton Sci 8:179–185

    CAS  Google Scholar 

  • Zhao X, Si Y, Sason RE, Crane CF, Price HJ, Stelly DM, Wendell JF, Paterson AH (1998) Dispersed repetitive DNA has spread to new genomes since polyploidy formation in cotton. Genome Res 8:479–492

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to gratefully acknowledge Cotton Inc. for its support on this project under a Cotton Incorporated Fellowship (Cary, NC) for James Frelichowski. The sequences of these markers are made public through the Cotton Microsatellite Database (CMD, http://www.mainlab.clemson.edu/cmd/projects/) as part of a community-wide initiative to increase coverage of the cotton genome. Names are necessary to report factually in available data; however, the USDA neither guarantees nor warrants the standard of products or service, and the use of the name by the USDA implies no approval of the products or service to the exclusion of others that may also be suitable. This research was supported in part, by Cotton Incorporated Project Number 05-704 (to MU) under the C.I. Fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Ulloa.

Additional information

Communicated by S. Hohmann

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frelichowski, J.E., Palmer, M.B., Main, D. et al. Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends. Mol Genet Genomics 275, 479–491 (2006). https://doi.org/10.1007/s00438-006-0106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0106-z

Keywords

Navigation