Skip to main content

Advertisement

Log in

Fine mapping of the nematode resistance gene Mi-3 in Solanum peruvianum and construction of a S. lycopersicum DNA contig spanning the locus

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Currently, the only genetic resistance against root-knot nematodes in the cultivated tomato Solanum lycopersicum (Lycopersicon esculentum) is due to the gene Mi-1. Another resistance gene, Mi-3, identified in the related wild species Solanum peruvianum (Lycopersicon peruvianum) confers resistance to nematodes that are virulent on tomato lines that carry Mi-1, and is effective at temperatures at which Mi-1 is not effective (above 30°C). Two S. peruvianum populations segregating for Mi-3 were used to develop a high-resolution map of the Mi-3 region of chromosome 12. S. lycopersicum BACs carrying flanking markers were identified and used to construct a contig spanning the Mi-3 region. Markers generated from BAC-end sequences were mapped in S. peruvianum plants in which recombination events had occurred near Mi-3. Comparison of the S. peruvianum genetic map with the physical map of S. lycopersicum indicated that marker order is conserved between S. lycopersicum and S. peruvianum. The 600 kb contig between Mi-3-flanking markers TG180 and NR18 corresponds to a genetic distance of about 7.2 cM in S. peruvianum. We have identified a marker that completely cosegregates with Mi-3, as well as flanking markers within 0.25 cM of the gene. These markers can be used to introduce Mi-3 into cultivated tomato, either by conventional breeding or cloning strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ammati M, Thomason IJ, McKinney HE (1986) Retention of resistance to Meloidogyne incognita in Lycopersicon genotypes at high soil temperature. J Nematol 18:491–495

    Google Scholar 

  • Ammiraju JSS, Veremis JC, Huang X, Roberts PA, Kaloshian I (2003) The heat-stable, root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet 106:478–484

    Google Scholar 

  • Bonnema G, Schipper D, van Heusden S, Lindhout P, Zabel P (1997) Tomato chromosome 1: high resolution and physical mapping of the short arm in an interspecific Lycopersicon esculentum×Lycopersicon peruvianum cross. Mol Genet Genomics 253:455–462

    Google Scholar 

  • Budiman MA, Mao L, Wood TC, Wing RA (2000) A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Res 10:129–136

    Google Scholar 

  • Budiman MA, Chang S-B, Lee S, Yang TJ, Zhang H-B, de Jong H, Wing RA (2004) Localization of jointlass-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theor Appl Genet 108:190–196

    Google Scholar 

  • Cap GB, Roberts P, Thomason IJ (1993) Inheritance of heat-stable resistance to Meloidogyne incognita in Lycopersicon peruvianum and its relationship to the Mi gene. Theor Appl Genet 85:777–783

    Google Scholar 

  • Castagnone-Sereno P, Wajnberg E, Bongiovanni M, Leroy F, Dalmasso A (1994) Genetic variation in Meloidogyne incognita virulence against the tomato Mi resistance gene. Evidence from isofemale line selection studies. Theor Appl Genet 88:749–753

    Google Scholar 

  • Chunwongse J, Bunn TB, Crossman C, Jiang J, Tanksley SD (1994) Chromosomal localization and molecular-marker tagging of powdery mildew resistance gene (Lv) in tomato. Theor Appl Genet 89:76–79

    Google Scholar 

  • Djian-Caporalino C, Pijarowski L, Fazari A, Samson M, Gaveau L, O’Byrne C, Lefebvre V, Caranta C, Palloix A, Abad P (2001) High-resolution genetic mapping of pepper (Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance root-knot nematodes (Meloidogyne spp.). Theor Appl Genet 103:592–600

    Google Scholar 

  • Doganlar S, Frary A, Tanksley SD (1997) Production of interspecific F1 hybrids, BC1, BC2 and BC3 populations between Lycopersicon esculentum and two accessions of Lycopersicon peruvianum carrying root-knot nematode resistance genes. Euphytica 95:203–207

    Google Scholar 

  • Dropkin VH (1969) The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: reversal by temperature. Phytopathology 59:1632–1637

    Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Google Scholar 

  • Grube RC, Radwanski ER, Jahn M (2000) Comparative genetics of disease resistance within Solonaceae. Genetics 155:873–887

    Google Scholar 

  • Holzman OV (1965) Effects of soil temperature on resistance of tomato to root-knot nematode (Meloidogyne incognita). Phytopathology 55:990–992

    Google Scholar 

  • Huang X, McGiffen M, Kaloshian I (2004) Reproduction of Mi-virulent Meloidogyne incognita isolates on Lycopersicon spp. J Nematol 36:69–75

    Google Scholar 

  • Kaloshian I, Williamson VM, Miyano G, Lawn DA, Westerdahl BB (1996) Resistance-breaking nematodes in California tomatoes. Calif Agric 50:18–19

    Google Scholar 

  • Kowyama Y, Kunz C, Lewis I, Newbigin E, Clarke AE, Anderson MA (1994) Self-compatibility in a Lycopersicon peruvianum variant (LA2157) is associated with a lack of style S-RNase activity. Theor Appl Genet 88:859–864

    Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    Google Scholar 

  • Mao L, Begum D, Goff SA, Wing RA (2001) Sequence and analysis of the tomato JOINTLESS locus. Plant Physiol 126:1331–1340

    Google Scholar 

  • Marek LF, Shoemaker RC (1997) BAC contig development by fingerprint analysis in soybean. Genome 40:420–427

    Google Scholar 

  • Marshal JA, Knapp S, Davey MR, Power JB, Cocking EC, Bennett MD, Cox AV (2001) Molecular systematics of Solanum section Lycopersicum Lycopersicon) using the nuclear ITS rDNA region. Theor Appl Genet 103:1216–1222

    Google Scholar 

  • Medina-Filho HP, Stevens MA (1980) Tomato breeding for nematode resistance: survey of resistance varieties for horticultural characteristics and genotype of acid phosphatase. Acta Hortic 100:383–391

    Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root-knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Google Scholar 

  • Moretti A, Bongiovanni M, Castagnone-Sereno P, Caranta C (2002) Introgression of resistance against Mi1-virulent Meloidogyne spp. from Lycopersicon peruvianum into L. esculentum. Tomato Genet Coop Rep 52:21–23

    Google Scholar 

  • Nombela G, Williamson VM, Muniz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant Microbe Int 16:645–649

    Google Scholar 

  • Parokonny AS, Marshal JA, Bennett MD, Cocking EC, Davey MR, Power JB (1997) Homoeologous pairing and recombination in backcross derivatives of tomato somatic hybrids (Lycopersicon esculentum + L. peruvianum). Theor appl Genet 94:713–723

    Google Scholar 

  • Rick CM, Yoder JI (1988) Classical and molecular genetics of tomato: highlights and perspectives. Annu Rev Genet 22:281–300

    Google Scholar 

  • Riggs RD, Winstead CR (1959) Studies on the resistance in tomato to root-knot nematodes and on the occurrence of pathogenic biotypes. Phytopathology 49:716–724

    Google Scholar 

  • Ritter E, Debener T, Barone A, Salamini F, Gebhardt C (1991) RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Mol Gen Genet 227:81–85

    Google Scholar 

  • Rivers BA, Bernatzky R, Robinson SJ, Jahnen-Dechent W (1993) Molecular diversity at the self-incompatibility locus is a salient feature in natural populations of wild tomato (Lycopersicon peruvianum). Mol Gen Genet 238:419–427

    Google Scholar 

  • Roberts PA, Thomason IJ (1986) Variability in reproduction of isolates of Meloidogyne incognita and M. javanica on resistant tomato genotypes. Plant Dis 70:547–551

    Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ulman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    Google Scholar 

  • Roupe van der Voort J, Wolters P, Folkertsma R, van Zandvoort P, Vinke H, Kanyuka K, Bendahmane A, Jacobsen E, janssen R, Bakker J (1997b) Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on co-migrating AFLP markers. Theor Appl Genet 95:874–880

    Google Scholar 

  • Smith PG (1944) Embryo culture of a tomato species hybrid. Proc Am Soc Hortic Sci 44:413–416

    Google Scholar 

  • Stamova BS, Chetelat RT (2000) Inheritance and genetic mapping of cucumber mosaic virus resistance introgressed from Lycopersicon chilense into tomato. Theor Appl Genet 101:527–537

    Google Scholar 

  • Tanksley SD et al (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    Google Scholar 

  • Van Ooijen JW, Sandbrink JM, Vrielink M, Verkerk R, Zabel P, Lindhout P (1994) An RFLP linkage map of Lycopersicon peruvianum. Theor Appl Genet 89:1007–1013

    Google Scholar 

  • Van der Vossen EAG, Rouppe van der Voort JNAM, Kanyuka K, Bendahamane A, Sandbrink H, Baulcombe DC, Bakker J, Stiekema WJ, Klein-Lankhorst RM (2000) Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J 23:567–576

    Google Scholar 

  • Veremis JC, Roberts PA (1996) Relationship between Meloidogyne incognita resistance gene in Lycopersicon peruvianum differentiated by heat sensitivity and nematode virulence. Theor Appl Genet 93:950–959

    Google Scholar 

  • Veremis JC, van Heusden AW, Roberts PA (1999) Mapping a novel heat-stable resistance to Meloidogyne in Lycopersicon peruvianum. Theor Appl Genet 98:274–280

    Google Scholar 

  • Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M, Rierens-Onstenk J, de Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat Biotechnol 16:1365–1369

    Google Scholar 

  • Williamson VM (1998) Root-knot nematode resistance genes in tomato and their potential for future use. Annu Rev Phytopathol 36:277–293

    Google Scholar 

  • Yaghoobi J, Kaloshian I, Wen Y, Williamson VM (1995) Mapping a new nematode resistance locus in Lycopersicon peruvianum. Theor Appl Genet 91:457–464

    Google Scholar 

Download references

Acknowledgements

We would like to thank R. Peng, E. Westbrook and W. Pudlo for technical support and S. King for developing the pseudo-F2 population. We thank S. Seah for critical reading of the manuscript. This work was supported by funds from: the National Science Foundation Cooperative Agreement BIR-8920216 to the Center for Engineering Plants for Resistance against Pathogens, an NSF Science and Technology Center; United States Department of Agriculture National Research Initiative Award 2003-00996; the University of California BioSTAR Program and the DNA Plant Technology Corporation. All experiments described in this paper comply with the current laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Williamson.

Additional information

Communicated by R. McCombie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaghoobi, J., Yates, J.L. & Williamson, V.M. Fine mapping of the nematode resistance gene Mi-3 in Solanum peruvianum and construction of a S. lycopersicum DNA contig spanning the locus. Mol Genet Genomics 274, 60–69 (2005). https://doi.org/10.1007/s00438-005-1149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-1149-2

Keywords

Navigation