Skip to main content
Log in

Role of the iron mobilization and oxidative stress regulons in the genomic response of yeast to hydroxyurea

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Hydroxyurea (HU) is a specific inhibitor of ribonucleotide reductase and thus impairs dNTP synthesis and DNA replication. The long-term transcriptional response of yeast cells to hydroxyurea was investigated using DNA microarrays containing all yeast coding sequences. We show that the redox-responsive Yap regulon and the iron-mobilization Aft regulon are activated in yeast cells treated with HU. Yap1 accumulates in the nucleus in response to HU, but HU activation of the Yap regulon was only partially dependent on Yap1 and yap1Δ mutants were not hypersensitive to HU. In contrast, deletion of the AFT1 and AFT2 transcription factor genes blocked the HU activation of a subset of the Aft regulon and the aft1Δ aft2Δ double mutant was hypersensitive to HU in an iron-suppressible manner. These results highlight the importance of the redox and iron mobilization regulons in the cellular response to HU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

HU:

Hydroxyurea

RNR:

Ribonucleotide reductase

DDR:

DNA Damage Response

ESR:

Environmental stress response

RT-PCR:

Reverse transcriptase polymerase chain reaction

References

  • Azevedo D, Tacnet F, Delaunay A, Rodrigues-Pousada C, Toledano MB (2003) Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling. Free Radic Biol Med 35:889–900

    Article  PubMed  CAS  Google Scholar 

  • Blaiseau PL, Lesuisse E, Camadro JM (2001) Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. J Biol Chem 276:34221–34226

    Article  PubMed  CAS  Google Scholar 

  • Chabes A et al (2000) Yeast ribonucleotide reductase has a heterodimeric iron-radical-containing subunit. Proc Natl Acad Sci USA 97:2474–2479

    Article  PubMed  CAS  Google Scholar 

  • Delaunay A, Isnard AD, Toledano MB (2000) H2O2 sensing through oxidation of the Yap1 transcription factor. Embo J 19:5157–5166

    Article  PubMed  CAS  Google Scholar 

  • Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB (2002) A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471–481

    Article  PubMed  CAS  Google Scholar 

  • Dubacq C, Chevalier A, Mann C (2004) The protein kinase Snf1 is required for tolerance to the ribonucleotide reductase inhibitor hydroxyurea. Mol Cell Biol 24:2560–2572

    Article  PubMed  CAS  Google Scholar 

  • Eklund H, Uhlin U, Farnegardh M, Logan DT, Nordlund P (2001) Structure and function of the radical enzyme ribonucleotide reductase. Prog Biophys Mol Biol 77:177–268

    Article  PubMed  CAS  Google Scholar 

  • Elledge SJ, Davis RW (1990) Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternative regulatory subunits of ribonucleotide reductase. Genes Dev 4:740–751

    Article  PubMed  CAS  Google Scholar 

  • Fauchon M et al (2002) Sulfur sparing in the yeast proteome in response to sulfur demand. Mol Cell 9:713–723

    Article  PubMed  CAS  Google Scholar 

  • Fernandes L, Rodrigues-Pousada C, Struhl K (1997) Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 17:6982–6993

    PubMed  CAS  Google Scholar 

  • Foury F, Talibi D (2001) Mitochondrial control of iron homeostasis. A genome wide analysis of gene expression in a yeast frataxin-deficient strain. J Biol Chem 276:7762–7768

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Naitoh Y, Kohno H, Tokunaga R, Taketani S (1992) Iron deprivation decreases ribonucleotide reductase activity and DNA synthesis. Life Sci 50:2059–2065

    Article  PubMed  CAS  Google Scholar 

  • Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, Brown PO (2001) Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell 12:2987–3003

    PubMed  CAS  Google Scholar 

  • Gasch AP et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    PubMed  CAS  Google Scholar 

  • Gounalaki N, Thireos G (1994) Yap1p, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response. Embo J 13:4036–4041

    PubMed  CAS  Google Scholar 

  • Haurie V, Boucherie H, Sagliocco F (2003) The Snf1 protein kinase controls the induction of genes of the iron uptake pathway at the diauxic shift in Saccharomyces cerevisiae. J Biol Chem 278:45391–45396

    Article  PubMed  CAS  Google Scholar 

  • Le NT, Richardson DR (2002) The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim Biophys Acta 1603:31–46

    PubMed  CAS  Google Scholar 

  • Lee J et al (1999) Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274:16040–16046

    Article  PubMed  CAS  Google Scholar 

  • Lycan DE, Osley MA, Hereford LM (1987) Role of transcriptional and posttranscriptional regulation in expression of histone genes in Saccharomyces cerevisiae. Mol Cell Biol 7:614–621

    PubMed  CAS  Google Scholar 

  • Nyholm S, Mann GJ, Johansson AG, Bergeron RJ, Graslund A, Thelander L (1993a) Role of ribonucleotide reductase in inhibition of mammalian cell growth by potent iron chelators. J Biol Chem 268:26200–26205

    CAS  Google Scholar 

  • Nyholm S, Thelander L, Graslund A (1993b) Reduction and loss of the iron center in the reaction of the small subunit of mouse ribonucleotide reductase with hydroxyurea. Biochemistry 32:11569–11574

    Article  CAS  Google Scholar 

  • Osborn AJ, Elledge SJ, Zou L (2002) Checking on the fork: the DNA-replication stress–response pathway. Trends Cell Biol 12:509–516

    Article  PubMed  CAS  Google Scholar 

  • Ostapenko D, Solomon MJ (2003) Budding yeast CTDK-I is required for DNA damage-induced transcription. Eukaryot Cell 2:274–283

    Article  PubMed  CAS  Google Scholar 

  • Parsons AB et al (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22:62–69

    Article  PubMed  CAS  Google Scholar 

  • Rouault TA, Tong WH (2005) Iron–sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 6:345–351

    Article  PubMed  CAS  Google Scholar 

  • Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR (2001) A second iron-regulatory system in yeast independent of Aft1p. Proc Natl Acad Sci USA 98:14322–14327

    Article  PubMed  CAS  Google Scholar 

  • Shakoury-Elizeh M et al (2004) Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae. Mol Biol Cell 15:1233–1243

    Article  PubMed  CAS  Google Scholar 

  • Sneeden JL, Loeb LA (2004) Mutations in the r2 subunit of ribonucleotide reductase that confer resistance to hydroxyurea. J Biol Chem 279:40723–40728

    Article  PubMed  CAS  Google Scholar 

  • Sommerhalter M, Voegtli WC, Perlstein DL, Ge J, Stubbe J, Rosenzweig AC (2004) Structures of the yeast ribonucleotide reductase Rnr2 and Rnr4 homodimers. Biochemistry 43:7736–7742

    Article  PubMed  CAS  Google Scholar 

  • Stadler JA, Schweyen RJ (2002) The yeast iron regulon is induced upon cobalt stress and crucial for cobalt tolerance. J Biol Chem 277:39649–39654

    Article  PubMed  CAS  Google Scholar 

  • Toone WM, Morgan BA, Jones N (2001) Redox control of AP-1-like factors in yeast and beyond. Oncogene 20:2336–2346

    Article  PubMed  CAS  Google Scholar 

  • Treger JM, McEntee K (1990) Structure of the DNA damage-inducible gene DDR48 and evidence for its role in mutagenesis in Saccharomyces cerevisiae. Mol Cell Biol 10:3174–3184

    PubMed  CAS  Google Scholar 

  • Weinert TA, Kiser GL, Hartwell LH (1994) Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8:652–665

    Article  PubMed  CAS  Google Scholar 

  • Wiatrowski HA, Carlson M (2003) Yap1 accumulates in the nucleus in response to carbon stress in Saccharomyces cerevisiae. Eukaryot Cell 2:19–26

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Iwai Y, Dancis A, Klausner RD (1995) AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. Embo J 14:1231–1239

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank P.-L. Blaiseau, A. Dancis, A. Delaunay, Y. Pereira, M. Toledano, and Y. Yamaguchi-Iwai for providing yeast strains, plasmids, and discussions. We are grateful to M. Werner for access to the microarray analysis platform and for general support. C.D. was supported by an Allocation Couplée de l’Ecole Normale Supérieure de Paris. This work was also supported by grants from the Association pour la Recherche sur le Cancer (ARC number 4470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Mann.

Additional information

Communicated by A. Aguilera

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubacq, C., Chevalier, A., Courbeyrette, R. et al. Role of the iron mobilization and oxidative stress regulons in the genomic response of yeast to hydroxyurea. Mol Genet Genomics 275, 114–124 (2006). https://doi.org/10.1007/s00438-005-0077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-0077-5

Keywords

Navigation