Skip to main content
Log in

Identification of growth phenotype-related genes in Aspergillus oryzae by heterologous macroarray and suppression subtractive hybridization

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Aspergillus oryzae requires polarized growth for colonization of solid substrates, and this growth phenotype differs from that seen in liquid medium. Various experimental approaches were used to identify genes that are differentially expressed when A. oryzae is grown on wheat kernels and in a wheat-based liquid medium. Hybridization of A. oryzae RNAs to a macroarray bearing cDNAs isolated from a library representing at least 16% of the total number of A. niger genes identified 14 differentially expressed cDNA clones, showing that heterologous macroarray analysis with an A. niger cDNA library can be used to identify regulated gene transcripts in the related species A. oryzae. Moreover, Northern analysis with a selection of eight probes for A. niger genes encoding proteins involved in morphological development and cell wall biosynthesis identified five more differentially expressed genes. A suppression subtractive hybridization procedure revealed another 12 differentially expressed genes. The results presented show that, of the 29 identified genes which are expressed at higher levels during growth on wheat kernels, six encode proteins that are functionally related to polarized growth, four encode products known to be involved in morphogenesis, three code for proteins related to cell wall composition, and nine of the cDNA clones encode novel proteins. These findings pinpoint genes associated with the changes in cellular morphogenesis seen in A. oryzae grown on wheat kernels as opposed to wheat-based liquid medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akao T, Gomi K, Goto K, Okazaki N, Akita O (2002) Subtractive cloning of cDNA from Aspergillus oryzae differentially regulated between solid state and liquid (submerged) culture. Curr Genet 41:275–281

    Google Scholar 

  • Bretscher A (2003) Polarized growth and organelle segregation in yeast: the tracks, motors, and receptors. J Cell Biol 160:811–816

    Article  CAS  PubMed  Google Scholar 

  • Cali BM, Doyle TC, Botstein D, Fink GR (1998) Multiple functions for actin during filamentous growth of Saccharomyces cerevisiae. Mol Biol Cell 9:1873–1889

    CAS  PubMed  Google Scholar 

  • Clak MD, Panapoulou GD, Cahill DJ, Bussow K, Lehrach H (1999) Construction and analysis of arrayed cDNA libraries. Methods Enzymol 303:205–233

    PubMed  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci 93:6025–6030

    Article  CAS  PubMed  Google Scholar 

  • Dynesen J, Nielsen J (2003) Branching is coordinated with mitosis in growing hyphae of Aspergillus nidulans. Fungal Genet Biol 40:15–24

    Article  CAS  PubMed  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldman H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin SG (1997) Life with 6000 genes. Science 275:1051–1052

    Google Scholar 

  • Goldman GH, Demolder J, Dewaele S, Herrera-Estrella A, Geremia RA, Van Montagu M, Contreras R (1992) Molecular cloning of the imidazoleglycerolphosphate dehydratase gene of Trichoderma harzianum by genetic complementation in Saccharomyces cerevisiae using a direct expression vector. Mol Gen Genet 234:481–488

    CAS  PubMed  Google Scholar 

  • Goodman A, Goode BL, Matsudaira P, Fink GR (2003) The Saccharomyces cerevisiae calponin/transgelin homolog Scp1 functions with fimbrin to regulate stability and organization of the actin cytoskeleton. Mol Biol Cell 14:2617–2629

    Article  CAS  PubMed  Google Scholar 

  • Hagen TJ, Shimkets LJ (1990) Nucleotide sequence and transcriptional products of the csg locus of Myxococcus xanthus. J Bact 172:15–23

    CAS  PubMed  Google Scholar 

  • Han K-H, Prade RA (2002) Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans. Mol Microbiol 43:1065–1078

    Article  CAS  PubMed  Google Scholar 

  • Hochstenbach F, Klis FM, van den Ende H, van Donselaar E, Peters PJ, Klausner RD (1998) Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenisis in fission yeast. Proc Natl Acad Sci 95:9161–9166

    Google Scholar 

  • Holker U, Hofer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    Article  CAS  PubMed  Google Scholar 

  • Hoogschagen M., Zhu Y, van As H, Tramper J, Rinzema A (2002) Influence of wheat type and pretreatment on fungal growth in solid state fermentation. Biotechnol Lett 23:1183–1187

    Google Scholar 

  • Howley PM, Israel MF, Law MF, Martin MA (1979) A rapid method for detecting and mapping homology between heterologous DNAs. J Biol Chem 254:4876–4883

    CAS  PubMed  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  PubMed  Google Scholar 

  • Katayama S, Hirata D, Arellano M, Perez P, Toda T (1999) Fission yeast alpha-glucan synthase Mok-I requires the actin cytoskeleton to localize the sites of growth and plays an essential role in cell morphogenisis downstream of protein kinase C function. J Cell Biol 144:1173–1186

    Article  CAS  PubMed  Google Scholar 

  • Korman VL, Tobacman LS (1999) Mutations in actin subdomain 3 that impair thin filament regulation by troponin and tropomyosin. J Biol Chem 274:22191–22196

    Article  CAS  PubMed  Google Scholar 

  • Kruse T, Lobedanz S, Berthelsen NM, Sogaard-Andersen L (2001) C-signal: a cell surface-associated morphogen that induces and co-ordinates multicellular fruiting body morphogenesis and sporulation in Myxococcus xanthus. Mol Microbiol 40:156–168

    Article  CAS  PubMed  Google Scholar 

  • Lee BU, Lee K, Mendez J, Shimkets LJ (1995) A tactile sensory system of Myxococcus xanthus involves an extracellular NAD(P)(+)-containing protein. Genes Dev 9:2964–2973

    CAS  PubMed  Google Scholar 

  • Li S, Lee BU, Shimkets LJ (1992) csgA expression entrains Myxococcus xanthus development. Genes Dev 6:401–410

    CAS  PubMed  Google Scholar 

  • Machida M (2002) Progress of Aspergillus oryzae genomics. Adv Appl Microbiol 51:81–106

    CAS  PubMed  Google Scholar 

  • Madania A, Dumoulin P, Grava S, Kitamoto H, Scharer-Brodbeck C, Soulard A, Moreau V, Winsor B (1999) The Saccharomyces cerevisiae homologue of human Wiskott-Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol Biol Cell 10:3521–3538

    CAS  PubMed  Google Scholar 

  • Müller C, McIntyre M, Hansen K, Nielsen J (2002b) Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis. Appl Env Microbiol 68:1827–1836

    Article  Google Scholar 

  • Nakajima K, Kunihiro S, Sano M, Zhang Y, Eto S, Chang YC, Suzuki T, Jigami Y, Machida M (2000) Comprehensive cloning and expression analysis of glycolytic genes from the filamentous fungus, Aspergillus oryzae. Curr Genet 37:322–327

    Article  CAS  PubMed  Google Scholar 

  • Prosner JI (1994) Kinetics of filamentous growth and branching. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London

  • Punt PJ, Seiboth B, Weenink XO, van Zeijl C, Lenders M, Konetschny C, Ram AF, Montijn R, Kubicek CP, van den Hondel CAMJJ (2001) Identification and characterization of a family of secretion-related small GTPase-encoding genes from the filamentous fungus Aspergillus niger: a putative SEC4 homologue is not essential for growth. Mol Microbiol 41:513–525

    Google Scholar 

  • Rahardjo YS, Weber FJ, le Compte EP, Tramper J, Rinzema A (2001) Contribution of aerial hyphae of Aspergillus oryzae to respiration in a model solid state fermentation. Biotechnol Bioeng 78:539–544

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Seiler S, Plamann M (2003) The genetic basis of cellular morphogenesis of the filamentous fungus Neurospora crassa. Mol Biol Cell 14:4352–4364

    Article  CAS  PubMed  Google Scholar 

  • Stamnes M (2002) Regulating the actin cytoskeleton during vesicular transport. Curr Opin Cell Biol 14:428–433

    Article  CAS  PubMed  Google Scholar 

  • Te Biesebeke R, Ruijter JG, Rahardjo SP, Hoogschagen MJ, Heerikhuisen M, Levin A, van Driel KGA, Schutyser MAI, Dijksterhuis J, Zhu Y, Weber FJ, de Vos WM, van den Hondel CAMJJ, Rinzema A, Punt PJ (2002) Aspergillus oryzae in solid state and submerged fermentations. FEMS Yeast Res 2:245–248

    Article  PubMed  Google Scholar 

  • Te Biesebeke R, van Biezen N, de Vos WM, van den Hondel CAMJJ, Punt PJ (2004) Different control mechanisms regulate the glucoamylase and protease gene transcription in Aspergillus oryzae in solid state and submerged fermentation. submitted.

  • Timberlake WE (1991) Temporal and spatial controls of Aspergillus development. Curr Opin Genet Dev 1:351–357

    CAS  PubMed  Google Scholar 

  • Trinci APJ (1974) A study of the kinetics of hyphal extension and branch initiation of fungal mycelia. J Gen Microbiol 81:225–236

    CAS  PubMed  Google Scholar 

  • Veldhuisen G, Saloheimo M, Fiers MA, Punt PJ, Contreras R, Penttilä M, van den Hondel CAMJJ (1997) Isolation and analysis of functional homologues of secretion-related SAR1 gene of Saccharomyces cerevisiae from Aspergillus niger and Trichoderma reesei. Mol Gen Genet 256:446–455

    Article  CAS  PubMed  Google Scholar 

  • Westfall PJ, Momany M (2002) Aspergillus nidulans septin AspB plays pre- and postmitotic roles in septum, branch, and conidiophore development. Mol Biol Cell 13:110–118

    Article  CAS  PubMed  Google Scholar 

  • Wosten HA (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646

    Article  CAS  PubMed  Google Scholar 

  • Wosten HA, de Vocht ML (2000) Hydrophobins: the fungal coat unravelled. Biochim Biophys Acta 1469:79–86

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wageningen Centre for Food Sciences (WCFS), an alliance of research organizations and food industry partners in the Netherlands set up to carry out strategic fundamental research. The authors thank Dr. Ted van der Lende from Kreatech Biotechnology (Amsterdam, The Netherlands), Drs. Rolf Boesten, Drs. Robert van den Berg, Dr. Roy Montijn and Dr. Frank Schuren from the TNO Nutrition and Food Research Institute (Zeist, the Netherlands) for fruitful discussions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Punt.

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

te Biesebeke, R., Levin, A., Sagt, C. et al. Identification of growth phenotype-related genes in Aspergillus oryzae by heterologous macroarray and suppression subtractive hybridization. Mol Genet Genomics 273, 33–42 (2005). https://doi.org/10.1007/s00438-004-1082-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1082-9

Keywords

Navigation