Skip to main content
Log in

Establishment of an enhancer trap system with Ds and GUS for functional genomics in rice

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

To develop an efficient means of enhancer trapping, a two-element system employing Ds and an Ac transposase (AcTPase) gene was tested in rice. We generated 263 transgenic rice plants, each of which harboured the maize transposable element Ds together with a GUS coding sequence under the control of a minimal promoter ( Ds-GUS), and a gene that confers resistance to the herbicide chlorsulfuron. Among the 263 lines generated, 42 were shown to have a single copy of the Ds-GUS element. Four single-copy lines were crossed with each of six transgenic plants that carried the AcTPase gene. Excision of the Ds-GUS in leaves of F1 plants was detected in eight combinations out of seventeen examined. The frequency of transposition of Ds-GUS in germ cells in the F1 plants was examined using 10,524 F2 plants, and 675 (6%) were judged to be transposants. Their frequencies differed among F1 plants depending on the AcTPase x Ds-GUS cross considered, and also among panicles on the same F1 plant. This suggests that Ds-GUS tends to transpose during panicle development. Southern analysis with a GUS probe showed different band patterns among transposants derived from different panicles. Therefore, the transposants derived from different panicles must have arisen independently. Transposants showing tissue-specific GUS activities were obtained, and enhancers thus trapped by the Ds-GUS element were identified. These results demonstrate that the system is suitable for the isolation of large numbers of independent Ds-GUS transposants, and for the identification of various tissue-specific enhancers. The Ds-GUS lines generated in this study offer a potentially powerful tool for studies on the functional genomics of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a, b
Fig. 3a–d
Fig. 4
Fig. 5
Fig. 6a–e

Similar content being viewed by others

References

  • Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA 96:10284–10289

    Article  CAS  PubMed  Google Scholar 

  • Azpiroz-Leehan R, Feldmann KA (1997) T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 13:152–156

    CAS  PubMed  Google Scholar 

  • Bhatt AM, Page T, Lawson EJR, Lister C, Dean C (1996) Use of Ac as an insertional mutagen in Arabidopsis. Plant J 9:935–945

    Article  CAS  PubMed  Google Scholar 

  • Chin HG, Choe MS, Lee S-H, Park SH, Park SH, Koo JC, Kim NY, Lee JJ, Oh BG, Yi GH, Kim SC, Choi HC, Cho MJ, Han C-D (1999) Molecular analysis of rice plants harboring an Ac / Ds transposable element-mediated gene trapping system. Plant J 19:615–623

    CAS  PubMed  Google Scholar 

  • Enoki H, Izawa T, Kawahara M, Komatsu M, Koh S, Kyozuka J, Shimamoto K (1999) Ac as a tool for the functional genomics of rice. Plant J 19:605–613

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff NV, Smith DV (1993) A versatile system for detecting transposition in Arabidopsis. Plant J 3:273–289

    Article  CAS  PubMed  Google Scholar 

  • Harushima Y, et al (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice ( Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    CAS  Google Scholar 

  • Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118–122

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Motohashi R, Kuromori T, Mizukado S, Sakurai T, Kanahara H, Seki M, Shinozaki K (2002) A new resource of locally transposed Dissociation elements for screening gene-knockout lines in silico on the Arabidopsis genome. Plant Physiol 129:1695–1699

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Eiguchi M, Kurata N (1999) Expression of novel homeobox genes in early embryogenesis in rice. Biochim Biophys Acta 1444:445–450

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Eiguchi M, Kurata N (2001) KNOX homeobox genes are sufficient in maintaining cultured cells in an undifferentiated state in rice. Genesis 30:231–238

    Article  CAS  PubMed  Google Scholar 

  • Izawa T, Shimamoto K (1996) Becoming a model plant: the importance of rice to plant science. Trends Plant Sci 1:95–99

    Article  Google Scholar 

  • Izawa T, Miyazaki C, Yamamoto M, Terada R, Iida S, Shimamoto K (1991) Introduction and transposition of the maize transposable element Ac in rice ( Oryza sativa L.). Mol Gen Genet 227:391–396

    CAS  PubMed  Google Scholar 

  • Izawa T, Ohnishi T, Nakano T, Ishida N, Enoki H, Hashimoto H, Itoh K, Terada R, Wu C, Miyazaki C, Endo T, Iida S, Shimamoto K (1997) Transposon tagging in rice. Plant Mol Biol 35:219–229

    Article  CAS  PubMed  Google Scholar 

  • Jeon J-S, et al (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    CAS  PubMed  Google Scholar 

  • Li X, Qian Q, Fu Z, Wang Y, Xlong G, Zeng D, Wang X, Liu X, Teng S, Fujimoto H, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621

    Article  CAS  PubMed  Google Scholar 

  • Liu Y-G, Mitsukawa N, Oosumi T, Whitter R (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    CAS  PubMed  Google Scholar 

  • Machida C, Onouchi H, Koizumi J, Hamada S, Semiarti E, Torikai S, Machida Y (1997) Characterization of the transposition pattern of the Ac element in Arabidopsis thaliana using endonuclease I-SceI. Proc Natl Acad Sci USA 94:8675–8680

    Google Scholar 

  • Matsuoka M, Ichikawa H, Saito A, Tada Y, Fujimura T, Kano-Murakami Y (1993) Expression of a rice homeobox gene causes altered morphology of transgenic plants. Plant Cell 5:1039–1048.

    Article  CAS  PubMed  Google Scholar 

  • Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T (2001) Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 411:212–214

    Article  CAS  PubMed  Google Scholar 

  • Moons A, De Keyser A, Van Montagu M (1997) A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191:197–204

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 19:4321–4325

    Google Scholar 

  • Nakagawa Y, Machida C, Machida Y, Toriyama K (2000) Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Physiol 41:733–742

    Google Scholar 

  • Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D-H, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896–1898

    Article  CAS  PubMed  Google Scholar 

  • Shimamoto K (1995) The molecular biology of rice. Science 270:1772–1773

    PubMed  Google Scholar 

  • Shimamoto K, Miyazaki C, Hashimoto H, Izawa T, Itoh K, Terada K, Inagaki Y, Iida S (1993) Trans -activation and stable integration of the maize transposable element Ds cotransfected with the Ac transposase gene in transgenic rice plants. Mol Gen Genet 239:354–360

    CAS  PubMed  Google Scholar 

  • Solis R, Takumi S, Mori N, Nakamura C (1999) Ac -mediated trans-activation of the Ds element in rice ( Oryza sativa L.) cells as revealed by GUS assay. Hereditas 131:23–31

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Yanai Y, Liu Y-G, Ishiguro S, Okada K, Shibata D, Whittier RF, Fedoroff NV (1996) Characterization and mapping of Ds -GUS-T-DNA lines for targeted insertional mutagenesis. Plant J 10:721–732

    Article  CAS  PubMed  Google Scholar 

  • Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, Holsten T, Gardner J, Wang B, Zhai W-X, Zhu L-H, Fauquet C, Ronald P (1995) A receptor-like protein encoded by the rice disease resistance gene Xa21. Science 270:1804–1806

    CAS  PubMed  Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α-subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya NM, Zhou X-R, Zhu Q-H, Ramm K, Wu L, Eamens A, Sivakumar R, Kato T, Yun D-W, Santhoshkumar C, Narayanan KK, Peacock JW, Dennis E (2002) An iAc / Ds gene and enhancer trapping system for insertional mutagenesis in rice. Funct Plant Biol 29:547–559

    CAS  Google Scholar 

  • Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene Spl7 encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA 99:7530–7535.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Nina Fedoroff (Carnegie Institute of Washington) and Dr. Hirofumi Uchimiya (Tokyo University) for the kind gifts of the enhancer trap vectors and the bialaphos resistance gene, respectively, and Dr. Shuji Yokoi (Nara Institute of Science and Technology) for helpful advice on rice transformation. We are grateful to Satomi Sakai, Eiko Matsushita, Tomomi Makino and Yayoi Miyashita for excellent technical assistance. This work was supported by Grants-in-Aid for Scientific Research (B) 10556003 from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by a grant (Rice Genome Project SY-2107) from the Ministry of Agriculture, Forestry and Fisheries of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kurata.

Additional information

Communicated by M.-A. Grandbastien

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, Y., Eiguchi, M. & Kurata, N. Establishment of an enhancer trap system with Ds and GUS for functional genomics in rice. Mol Genet Genomics 271, 639–650 (2004). https://doi.org/10.1007/s00438-004-1023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1023-7

Keywords

Navigation