Skip to main content
Log in

The ΔfliD mutant of Pseudomonas syringae pv. tabaci, which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non-host tomato cells

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

To investigate the role of flagella and monomer flagellin in the interaction between Pseudomonas syringae pv. tabaci and plants, non-polar fliC and fliD mutants were produced. The ORFs for fliC and fliD are deleted in the ΔfliC and ΔfliD mutants, respectively. Both mutants lost all flagella and were non-motile. The ΔfliC mutant did not produce flagellin, whereas the ΔfliD mutant, which lacks the HAP2 protein, secreted large amounts of monomer flagellin into the culture medium. Inoculation of non-host tomato leaves with wild-type P. syringae pv. tabaci or the ΔfliD mutant induced a hypersensitive reaction (HR), whereas the ΔfliC mutant propagated and caused characteristic symptom-like changes. In tomato cells in suspension culture, wild-type P. syringae pv. tabaci induced slight, visible HR-like changes. The ΔfliC mutant did not induce HR, but the ΔfliD mutant induced a remarkably strong HR. Expression of the hsr203J gene was rapidly and strongly induced by inoculation with the ΔfliD mutant, compared to inoculation with wild-type P. syringae pv. tabaci. Furthermore, introduction of the fliC gene into the ΔfliC mutant restored motility and HR-inducing ability in tomato. These results, together with our previous study, suggest that the flagellin monomer of pv. tabaci acts as a strong elicitor to induce HR-associated cell death in non-host tomato cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A, B.
Fig. 2A, B.
Fig. 3A–C.
Fig. 4.
Fig. 5.
Fig. 6A, B.

Similar content being viewed by others

References

  • Aizawa S (1996) Flagella assembly in Salmonella typhimurium. Mol Microbiol 19:1–5

    CAS  PubMed  Google Scholar 

  • Arora SK, Ritchings BW, Almira EC, Lory S, Ramphal R (1997) A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa flagella in a cascade manner. J Bacteriol 179:5574–5581

    CAS  PubMed  Google Scholar 

  • Arora SK, Ritchings BW, Almira EC, Lory S, Ramphal R (1998) The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect Immun 66:1000–1007

    CAS  PubMed  Google Scholar 

  • Arora SK, Bangera M, Lory S, Ramphal R (2001) A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. Proc Natl Acad Sci USA 98:9342–9347

    Article  CAS  PubMed  Google Scholar 

  • Bauer Z, Gomez-Gomez L, Boller T, Felix G (2001) Sensitivity of different ecotypes and mutants of Arabidopsis thaliana towards the bacterial elicitor flagellin correlates with the presence of receptor binding sites. J Biol Chem 276:45669–45676

    Article  CAS  PubMed  Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich D, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium. Genome Res 11:731–733

    CAS  PubMed  Google Scholar 

  • Casaz P, Happel A, Keithan J, Read DL, Strain SR, Levy SB (2001) The Pseudomonas fluorescens transcriptional activator AdnA is required for adhesion and motility. Microbiology 147:355–361

    CAS  PubMed  Google Scholar 

  • Che FS, Nakajima Y, Tanaka N, Iwano M, Yoshida T, Takayama S, Kadota I, Isogai A (2000) Flagellin from an incompatible strain of Pseudomonas avenae induces a resistance response in cultured rice cells. J Biol Chem 275: 32347–32356

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    CAS  PubMed  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    CAS  PubMed  Google Scholar 

  • Gomez-Gomez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:277–284

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Gomez L, Bauer Z, Boller T (2001) Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Hattermann DR, Ries SM (1989) Motility of Pseudomonas syringae pv. glycinea and its role in infection. Phytopathology 79:284–289

    Google Scholar 

  • He SY, Huang H, Collmer A (1993) Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255–1266

    CAS  PubMed  Google Scholar 

  • Homma M, Iino T (1985) Locations of hook-associated proteins in flagellar structures of Salmonella typhimurium. J Bacteriol 162: 183–189

    CAS  PubMed  Google Scholar 

  • Homma M, Kutsukake K, Iino T, Yamaguchi S (1984a) Hook-associated proteins essential for flagellar filament formation in Salmonella typhimurium. J Bacteriol 157:100–108

    CAS  PubMed  Google Scholar 

  • Homma M, Fujita H, Yamaguchi S, Iino T (1984b) Excretion of unassembled flagellin by Salmonella typhimurium mutants deficient in hook-associated proteins. J Bacteriol 159:1056–1059

    CAS  PubMed  Google Scholar 

  • Huang HC, Schuurink R, Denny TP, Atkinson MM, Baker CJ, Yucel L, Hutcheson SW, Collmer A (1988) Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco. J Bacteriol 170:4748–4756

    CAS  PubMed  Google Scholar 

  • Ichinose Y, Andi S, Doi R, Tanaka R, Taguchi F, Sasabe M, Toyoda K, Shiraishi T, Yamada T (2001) Generation of hydrogen peroxide is not required for harpin-induced apoptotic cell death in tobacco BY-2 cell suspension culture. Plant Physiol Biochem 39:771–776

    Article  CAS  Google Scholar 

  • Ikeda T, Asakura S, Kamiya RJ (1985) "Cap" on the tip of Salmonella flagella. Mol Biol 184:735–737

    CAS  Google Scholar 

  • Ikeda T, Homma M, Iino T, Asakura S, Kamiya R (1987) Localization and stoichiometry of hook-associated proteins within Salmonella typhimurium flagella. J Bacteriol 169:1168–1173

    CAS  PubMed  Google Scholar 

  • Ikeda T, Yamaguchi S, Hotani H (1993) Flagellar growth in a filament-less Salmonella fliD mutant supplemented with purified hook-associated protein 2. J Biochem 114:39–44

    CAS  PubMed  Google Scholar 

  • Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197

    CAS  PubMed  Google Scholar 

  • Lindgren PB, Peet RC, Panopoulos NJ (1986) Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity of bean plants and hypersensitivity on nonhost plants. J Bacteriol 168:512–522

    CAS  PubMed  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    CAS  Google Scholar 

  • Manson MD, Armitage JP, Hoch JA, MacNab RM (1998) Bacterial locomotion and signal transduction. J Bacteriol 180:1009–1022

    CAS  PubMed  Google Scholar 

  • Nakabayashi T, Shimo Y, Honda C, Kamisako W, Kimura Y (1995) Phosphodiesterase I in cultured cells of Mentha arvensis. Phytochemistry 39:1013–1016

    Article  CAS  Google Scholar 

  • Panopoulos NJ, Schroth MN (1974) Role of flagellar motility in the invasion of bean leaves by Pseudomonas phaseolicola. Phytopathology 64:1389–1397

    Google Scholar 

  • Pontier D, Godiard L, Marco Y, Roby D (1994) hsr 203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant/pathogen interactions. Plant J 5:507–521

    CAS  PubMed  Google Scholar 

  • Sasabe M, Takeuchi K, Kamoun S, Ichinose Y, Govers F, Toyoda K, Shiraishi T, Yamada T (2000) Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. Eur J Biochem 267:5005–5013

    Article  CAS  PubMed  Google Scholar 

  • Schaefer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    PubMed  Google Scholar 

  • Senapin S, Chaisri U, Panyim S, Tungpradabkul S (1999) A new type of flagellin gene in Pseudomonas putida. J Gen Appl Microbiol 45:105–113

    CAS  PubMed  Google Scholar 

  • Stover CK, et al (2001) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunisitic pathogen. Nature 406:959–964

    Google Scholar 

  • Taguchi F, Tanaka R, Kinoshita S, Ichinose Y, Imura Y, Andi S, Toyoda K, Shiraishi T, Yamada T (2001) HarpinPsta from Pseudomonas syringae pv. tabaci is defective and deficient in its expression and HR-inducing activity. Gen J Plant Pathol 67:116–123

    CAS  Google Scholar 

  • Taguchi F, Shimizu R, Nakajima R, Toyoda K, Shiraishi, T, Ichinose Y (2003) Differential effects of flagellins from Pseudomonas syringae pv. tabaci, tomato and glycinea on plant defense response. Plant Physiol Biochem, in press

  • Tans-Kersten J, Huang H, Allen C (2001) Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol 183:3597–3605

    Article  CAS  PubMed  Google Scholar 

  • Totten PA, Lory S (1990) Characterization of type a flagellin gene from Pseudomonas aeruginosa PAK. J Bacteriol 172:7188–7199

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. A. Collmer (Cornell University, Ithaca, N.Y.) and the Leaf Tobacco Research Laboratory of Japan Tobacco Inc. for providing P. syringae pv. tomato and pv. tabaci, respectively. We are grateful to the Plant Cell Bank of The Institute of Physical and Chemical Research (RIKEN) and Dr. Y. Hikichi (Kochi University, Japan) for providing the tomato cell culture Sly-1 and the hsr203J cDNA clone, respectively. We are also grateful to Dr. K. Kamimura (Okayama University, Japan) for technical assistance in the observation of bacteria by transmission electron microscopy. This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (A) (No. 12052215) from the Ministry of Education, Culture, Sports, Science and Technology in Japan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ichinose.

Additional information

Communicated by A. Kondorosi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, R., Taguchi, F., Marutani, M. et al. The ΔfliD mutant of Pseudomonas syringae pv. tabaci, which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non-host tomato cells. Mol Gen Genomics 269, 21–30 (2003). https://doi.org/10.1007/s00438-003-0817-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0817-3

Keywords

Navigation