Skip to main content

Advertisement

Log in

Comparative mitochondrial proteomics of Leishmania tropica clinical isolates resistant and sensitive to meglumine antimoniate

  • Protozoology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Antimony is an important drug for the treatment of Leishmania parasite infections. In several countries, the emergence of drug-resistant Leishmania species has reduced the effectiveness of this drug. The mechanism of clinical drug resistance is unclear. The aim of this work was to identify mitochondrial proteome alterations associated with resistance against antimonial. A combination of cell fractionation, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and Label-Free Quantification was used to characterize the mitochondrial protein composition of Leishmania tropica field isolates resistant and sensitive to meglumine antimoniate. LC-MS/MS analysis resulted in the identification of about 1200 proteins of the Leishmania tropica mitochondrial proteome. Various criteria were used to allocate about 40% proteins to mitochondrial proteome. Comparative quantitative proteomic analysis of the sensitive and the resistant strains showed proteins with differential abundance in resistance species are involved in TCA and aerobic respiration enzymes, stress proteins, lipid metabolism enzymes, and translation. These results showed that the mechanism of antimony resistance in Leishmania spp. field isolate may be associated with alteration in enzymes involved in mitochondrial pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badirzadeh A, Mohebali M, Ghasemian M, Amini H, Zarei Z, Akhoundi B, Hajjaran H, Emdadi D, Molaei S, Kusha A, Alizadeh S (2013) Cutaneous and post kala-azar dermal leishmaniasis caused by Leishmania infantum in endemic areas of visceral leishmaniasis, northwestern Iran 2002–2011: a case series. Pathogens Glob Health 107(4):194–197

    Article  Google Scholar 

  • Badirzadeh A et al (2017) The burden of leishmaniasis in Iran, acquired from the global burden of disease during 1990-2010. Asian Pac J Trop Dis 7(9):513–518

    Article  Google Scholar 

  • Berg M et al (2015) Experimental resistance to drug combinations in Leishmania donovani: metabolic and phenotypic adaptations. Antimicrob Agents Chemother 59(4): 2242–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biyani N, Singh AK, Mandal S, Chawla B, Madhubala R (2011) Differential expression of proteins in antimony-susceptible and-resistant isolates of Leishmania donovani. Mol Biochem Parasitol 179(2):91–99

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Braly P, Simpson L, Kretzer F (1974) Isolation of kinetoplast-mitochondrial complexes from Leishmania tarentolae. J Eukaryot Microbiol 21(5):782–790

    CAS  Google Scholar 

  • Brochu C, Haimeur A, Ouellette M (2004) The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite Leishmania. Cell Stress Chaperones 9(3):294–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brotherton M-C et al (2013) Proteomic and genomic analyses of antimony resistant Leishmania infantum mutant. PLoS One 8(11):e81899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brotherton M-C, Bourassa S, Légaré D, Poirier GG, Droit A, Ouellette M (2014) Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum. Int J Parasitol Drugs Drug Resist 4(2):126–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Chawla B, Jhingran A, Panigrahi A, Stuart KD, Madhubala R (2011) Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin–susceptible–resistant Leishmania donovani. PLoS One 6(10):e26660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cottrell JS, London U (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567

    Article  PubMed  Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Bustos T, Ibarrola-Vannucci AK, Díaz-Lozano I, Ramírez JL, Osuna A (2018) Characterization and functionality of two members of the SPFH protein superfamily, prohibitin 1 and 2 in Leishmania major. Parasit Vectors 11(1):622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das M, Saudagar P, Sundar S, Dubey VK (2013) Miltefosine-unresponsive Leishmania donovani has a greater ability than miltefosine-responsive L. donovani to resist reactive oxygen species. FEBS J 280(19):4807–4815

    Article  CAS  PubMed  Google Scholar 

  • Ferro M, Salvi D, Brugière S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2(5):325–345

    Article  CAS  PubMed  Google Scholar 

  • Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts. Nat Protoc 2(2):287–295

    Article  CAS  PubMed  Google Scholar 

  • Fuqua SA, Oesterreich S, Hilsenbeck SG, Von Hoff DD, Eckardt J, Osborne CK (1994) Heat shock proteins and drug resistance. Breast Cancer Res Treat 32(1):67–71

    Article  CAS  PubMed  Google Scholar 

  • Gazanion É, Fernández-Prada C, Papadopoulou B, Leprohon P, Ouellette M (2016) Cos-Seq for high-throughput identification of drug target and resistance mechanisms in the protozoan parasite Leishmania. Proc Natl Acad Sci U S A 113(21):E3012–E3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves RL, Barreto RFM, Polycarpo CR, Gadelha FR, Castro SL, Oliveira MF (2011) A comparative assessment of mitochondrial function in epimastigotes and bloodstream trypomastigotes of Trypanosoma cruzi. J Bioenerg Biomembr 43(6):651–661

    Article  PubMed  CAS  Google Scholar 

  • Guerra F, Arbini AA, Moro L (2017) Mitochondria and cancer chemoresistance. Biochim Biophys Acta Bioenerg 1858(8):686–699

    Article  CAS  PubMed  Google Scholar 

  • Hadighi R, Mohebali M, Boucher P, Hajjaran H, Khamesipour A, Ouellette M (2006) Unresponsiveness to Glucantime treatment in Iranian cutaneous leishmaniasis due to drug-resistant Leishmania tropica parasites. PLoS Med 3(5):e162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hajjaran H et al (2013) Molecular identification and polymorphism determination of cutaneous and visceral leishmaniasis agents isolated from human and animal hosts in Iran. Biomed Res Int 2013: 789326

  • Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 1632(1–3):16–30

    Article  CAS  Google Scholar 

  • Harder S, Bente M, Isermann K, Bruchhaus I (2006) Expression of a mitochondrial peroxiredoxin prevents programmed cell death in Leishmania donovani. Eukaryot Cell 5(5):861–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim M, Gahoual R, Enkler L, Becker HD, Chicher J, Hammann P, François YN, Kuhn L, Leize-Wagner E (2016) Improvement of mitochondria extract from Saccharomyces cerevisiae characterization in shotgun proteomics using sheathless capillary electrophoresis coupled to tandem mass spectrometry. J Chromatogr Sci 54(4):653–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeddi F, Piarroux R, Mary C (2011) Antimony resistance in Leishmania, focusing on experimental research. J Trop Med 2011: 695382

  • Jeffers V et al (2017) TgPRELID, a mitochondrial protein linked to multidrug resistance in the parasite toxoplasma gondii. mSphere 2(1):e00229–e00216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin L et al (2014) Down-regulation of Rab 5C-dependent endocytosis and glycolysis in cisplatin-resistant ovarian cancer cell lines. Mol Cell Proteomics M113:033217

    Google Scholar 

  • Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4(11):923–925

    Article  PubMed  CAS  Google Scholar 

  • Kazemi-Rad E, Mohebali M, Khadem-Erfan MB, Saffari M, Raoofian R, Hajjaran H, Hadighi R, Khamesipour A, Rezaie S, Abedkhojasteh H, Heidari M (2013) Identification of antimony resistance markers in Leishmania tropica field isolates through a cDNA-AFLP approach. Exp Parasitol 135(2):344–349

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519

    Article  CAS  PubMed  Google Scholar 

  • Link AJ (1999) 2-D proteome analysis protocols, vol 112. Springer Science & Business Media, Berlin

    Google Scholar 

  • Lira R, Sundar S, Makharia A, Kenney R, Gam A, Saraiva E, Sacks D (1999) Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani. J Infect Dis 180(2):564–567

    Article  CAS  PubMed  Google Scholar 

  • Mailloux RJ, Bériault R, Lemire J, Singh R, Chénier DR, Hamel RD, Appanna VD (2007) The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One 2(8):e690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M (2005) Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol 57(6):1690–1699

    Article  CAS  PubMed  Google Scholar 

  • Masoori L, Kheirandish F, Haghighi A, Mohebali M, Akhoundi B, Taghipour N, Gachkar L, Chegeni-Sharafi A, Moin-Vaziri V (2018) Molecular-based detection of Leishmania infantum in human blood samples in a new focus of visceral Leishmaniasis in Lorestan Province, Iran. J Arthropod Borne Dis 12(1):67–75

    PubMed  PubMed Central  Google Scholar 

  • Mathur R, Das RP, Ranjan A, Shaha C (2015) Elevated ergosterol protects Leishmania parasites against antimony-generated stress. FASEB J 29(10):4201–4213

    Article  CAS  PubMed  Google Scholar 

  • Matrangolo FS, Liarte DB, Andrade LC, de Melo MF, Andrade JM, Ferreira RF, Santiago AS, Pirovani CP, Silva-Pereira RA, Murta SM (2013) Comparative proteomic analysis of antimony-resistant and-susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Mol Biochem Parasitol 190(2):63–75

    Article  CAS  PubMed  Google Scholar 

  • Messaritakis I, Christodoulou V, Mazeris A, Koutala E, Vlahou A, Papadogiorgaki S, Antoniou M (2013) Drug resistance in natural isolates of Leishmania donovani sl promastigotes is dependent of Pgp170 expression. PLoS One 8(6):e65467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michels P, Hannaert V, Bringaud F (2000) Metabolic aspects of glycosomes in Trypanosomatidae–new data and views. Parasitol Today 16(11):482–489

    Article  CAS  PubMed  Google Scholar 

  • Millerioux Y, Morand P, Biran M, Mazet M, Moreau P, Wargnies M, Ebikeme C, Deramchia K, Gales L, Portais JC, Boshart M, Franconi JM, Bringaud F (2012) ATP synthesis-coupled and-uncoupled acetate production from acetyl-CoA by mitochondrial acetate: succinate CoA-transferase and acetyl-CoA thioesterase in Trypanosoma. J Biol Chem 287(21):17186–17197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira W, Leprohon P, Ouellette M (2011) Tolerance to drug-induced cell death favours the acquisition of multidrug resistance in Leishmania. Cell Death Dis 2(9):e201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opperdoes FR, Coombs GH (2007) Metabolism of Leishmania: proven and predicted. Trends Parasitol 23(4):149–158

    Article  CAS  PubMed  Google Scholar 

  • Opperdoes FR, Michels PA (2008) Complex I of Trypanosomatidae: does it exist? Trends Parasitol 24(7):310–317

    Article  CAS  PubMed  Google Scholar 

  • Palmfeldt J, Bross P (2017) Proteomics of human mitochondria. Mitochondrion 33:2–14

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR (2011) Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant J 66(1):161–181

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, Acestor N, Myler PJ, Stuart KD (2009) A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics 9(2):434–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B (2017) Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl Trop Dis 11(12):e0006052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Priest JW, Hajduk S (1992) Cytochrome c reductase purified from Crithidia fasciculata contains an atypical cytochrome c1. J Biol Chem 267(28):20188–20195

    CAS  PubMed  Google Scholar 

  • Purkait B, Kumar A, Nandi N, Sardar AH, Das S, Kumar S, Pandey K, Ravidas V, Kumar M, de T, Singh D, Das P (2012) Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother 56(2):1031–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai S, Goel SK, Dwivedi UN, Sundar S, Goyal N (2013) Role of efflux pumps and intracellular thiols in natural antimony resistant isolates of Leishmania donovani. PLoS One 8(9):e74862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivière L et al (2009) Acetate produced in the mitochondrion is the essential precursor for lipid biosynthesis in procyclic trypanosomes. Proc Natl Acad Sci 106(31):12694–12699

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy A, Ganguly A, BoseDasgupta S, Das BB, Pal C, Jaisankar P, Majumder HK (2008) Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3, 3′-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani. Mol Pharmacol 74(5):1292–1307

    Article  CAS  PubMed  Google Scholar 

  • Saitou M, Isonishi S, Hamada T, Kiyokawa T, Tachibana T, Ishikawa H, Yasuda M (2009) Mitochondrial ultrastructure-associated chemotherapy response in ovarian cancer. Oncol Rep 21(1):199–204

    PubMed  Google Scholar 

  • Sereno D, Holzmuller P, Mangot I, Cuny G, Ouaissi A, Lemesre J-L (2001) Antimonial-mediated DNA fragmentation inLeishmania infantum Amastigotes. Antimicrob Agents Chemother 45(7):2064–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekari F, Baharvand H, Salekdeh GH (2014) Organellar proteomics of embryonic stem cells advances in protein chemistry and structural biology. 95. Elsevier, p 215-230

  • Singh S, Dubey VK (2016) Quantitative proteome analysis of Leishmania donovani under spermidine starvation. PLoS One 11(4):e0154262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sognier MA, Yin Z, Eberle RL, Sweet KM, Altenberg GA, Belli JA (1994) Sequestration of doxorubicin in vesicles in a multidrug-resistant cell line (LZ-100). Biochem Pharmacol 48(2):391–401

    Article  CAS  PubMed  Google Scholar 

  • Soumya N, Kumar IS, Shivaprasad S, Gorakh LN, Dinesh N, Swamy KK, Singh S (2015) AMP-acetyl CoA synthetase from Leishmania donovani: identification and functional analysis of ‘PX4GK’motif. Int J Biol Macromol 75:364–372

    Article  CAS  PubMed  Google Scholar 

  • Stekhoven DJ, Omasits U, Quebatte M, Dehio C, Ahrens CH (2014) Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism. J Proteome 99:123–137

    Article  CAS  Google Scholar 

  • Sudhandiran G, Shaha C (2003) Antimonial-induced increase in intracellular Ca2+ through non-selective cation channels in the host and the parasite is responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem 278(27):25120–25132

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Shukair S, Naik TJ, Moazed F, Ardehali H (2008) Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol Cell Biol 28(3):1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Sundar S, Goyal N (2007) Molecular mechanisms of antimony resistance in Leishmania. J Med Microbiol 56(2):143–153

    Article  PubMed  CAS  Google Scholar 

  • Sundar S, Pai K, Kumar R, Pathak-Tripathi K, Gam AA, Ray M, Kenney RT (2001) Resistance to treatment in Kala-azar: speciation of isolates from Northeast India. Am J Trop Med Hyg 65(3):193–196

    Article  CAS  PubMed  Google Scholar 

  • Tasbihi M, Shekari F, Hajjaran H, Masoori L, Hadighi R (2019) Mitochondrial proteome profiling of Leishmania tropica. Microb Pathog 133:103542

    Article  CAS  PubMed  Google Scholar 

  • Tessarollo NG, Andrade JM, Moreira DS, Murta SMF (2015) Functional analysis of iron superoxide dismutase-a in wild-type and antimony-resistant Leishmania braziliensis and Leishmania infantum lines. Parasitol Int 64(2):125–129

    Article  CAS  PubMed  Google Scholar 

  • t’Kindt R, Scheltema RA, Jankevics A, Brunker K, Rijal S, Dujardin JC, Breitling R, Watson DG, Coombs GH, Decuypere S (2010) Metabolomics to unveil and understand phenotypic diversity between pathogen populations. PLoS Negl Trop Dis 4(11):e904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vergnes B, Gourbal B, Girard I, Sundar S, Drummelsmith J, Ouellette M (2007) A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteomics 6(1):88–101

    Article  CAS  PubMed  Google Scholar 

  • Vincent IM, Racine G, Légaré D, Ouellette M (2015) Mitochondrial proteomics of antimony and miltefosine resistant Leishmania infantum. Proteomes 3(4):328–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker J et al (2012) Discovery of factors linked to antimony resistance in Leishmania panamensis through differential proteome analysis. Mol Biochem Parasitol 183(2):166–176

    Article  CAS  PubMed  Google Scholar 

  • Wiśniewski JR, Duś K, Mann M (2013) Proteomic workflow for analysis of archival formalin-fixed and paraffin-embedded clinical samples to a depth of 10 000 proteins. Proteomics Clin Appl 7(3–4):225–233

    Article  PubMed  CAS  Google Scholar 

  • Zhang O, Wilson MC, Xu W, Hsu FF, Turk J, Kuhlmann FM, Wang Y, Soong L, Key P, Beverley SM, Zhang K (2009) Degradation of host sphingomyelin is essential for Leishmania virulence. PLoS Pathog 5(12):e1000692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4(3):e532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to Dr. Marc Ouellete for proof-reading and revising the final draft of the manuscript.

Funding

This research is a part of Ph.D thesis of first author and was supported by Grant No.28625 from Iran University of Medical Sciences (IUMS), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

1. Conceived and designed the experiments: RH FSH MT HH.

2. Performed the experiments: MT FSH.

3. Analyzed the data: MT FSH RH.

4. Wrote and revised the paper: MT FSH RH MKh.

5. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Faezeh Shekari or Ramtin Hadighi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Additional information

Section Editor: Sarah Hendrickx

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 155 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasbihi, M., Shekari, F., Hajjaran, H. et al. Comparative mitochondrial proteomics of Leishmania tropica clinical isolates resistant and sensitive to meglumine antimoniate. Parasitol Res 119, 1857–1871 (2020). https://doi.org/10.1007/s00436-020-06671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06671-x

Keywords

Navigation