Skip to main content
Log in

Triplex real-time PCR for detection of Crithidia mellificae and Lotmaria passim in honey bees

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Currently, light microscopic examination of cell morphology cannot discriminate Crithidia mellificae and Lotmaria passim with 100% certainty. Here, a minor groove-binding (MGB) probe-based multiplex real-time PCR assay was developed for the simultaneous and quantitative detection of C. mellificae and L. passim in honey bees. A conserved Hymenoptera 18S rRNA gene was built in as an internal control that allows accurate detection of PCR inhibition and failure of DNA extraction. The newly developed assay was also applied to field samples. Of 21 honey bee colonies (446 bees) sampled from six counties in both central and eastern Massachusetts, 3 colonies (14.29%) and 8 bees (1.79%) were infected with L. passim, and 1 colony (4.76%) and 1 bee (0.22%) with C. mellificae. Our data showed a low rate of trypanosomatid infection, and L. passim was more prevalent than C. mellificae in honey bee samples in Massachusetts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Xu.

Ethics declarations

The research does not involve human and/or animal experimentation.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Palmer-Young, E., Skyrm, K. et al. Triplex real-time PCR for detection of Crithidia mellificae and Lotmaria passim in honey bees. Parasitol Res 117, 623–628 (2018). https://doi.org/10.1007/s00436-017-5733-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-017-5733-2

Keywords

Navigation