Skip to main content
Log in

Comparative analysis of immune effects in mice model: Clonorchis sinensis cysteine protease generated from recombinant Escherichia coli and Bacillus subtilis spores

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Clonorchiasis remains a nonnegligible public health problem in endemic areas. Cysteine protease of Clonorchis sinensis (CsCP) plays indispensable roles in the parasitic physiology and pathology, and has been exploited as a promising drug and vaccine candidate. In recent years, development of spore-based vaccines against multiple pathogens has attracted many investigators’ interest. In previous studies, the recombinant Escherichia coli (BL21) and Bacillus subtilis spores expressing CsCP have been successfully constructed, respectively. In this study, the immune effects of CsCP protein purified from recombinant BL21 (rCsCP) and B. subtilis spores presenting CsCP (B.s-CsCP) in Balb/c mice model were conducted with comparative analysis. Levels of specific IgG, IgG1 and IgG2a were significantly increased in sera from both rCsCP and B.s-CsCP intraperitoneally immunized mice. Additionally, recombinant spores expressing abundant fusion CsCP (0.03125 pg/spore) could strongly enhance the immunogenicity of CsCP with significantly higher levels of IgG and isotypes. Compared with rCsCP alone, intraperitoneal administration of mice with spores expressing CsCP achieved a better effect of fighting against C. sinensis infection by slowing down the process of fibrosis. Our results demonstrated that a combination of Th1/Th2 immune responses could be elicited by rCsCP, while spores displaying CsCP prominently induced Th1-biased specific immune responses, and the complex cytokine network maybe mediates protective immune responses against C. sinensis. This work further confirmed that the usage of B. subtilis spores displaying CsCP is an effective way to against C. sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agematsu K, Hokibara S, Nagumo H, Shinozaki K, Yamada S, Komiyama A (1999) Plasma cell generation from B-lymphocytes via CD27/CD70 interaction. Leuk Lymphoma 35:219–225

    Article  CAS  PubMed  Google Scholar 

  • Alves CR, Benévolo-De-Andrade TC, Alves JL, Pirmez C (2004) Th1 and Th2 immunological profile induced by cysteine proteinase in murine leishmaniasis. Parasite Immunol 26:127–135

    Article  CAS  PubMed  Google Scholar 

  • Amuguni H, Tzipori S (2012) Bacillus subtilis: a temperature resistant and needle free delivery system of immunogens. Hum Vaccin Immunother 8:979–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backus GS, Howden R, Fostel J, Bauer AK, Cho HY, Marzec J, Peden DB, Kleeberger SR (2010) Protective role of interleukin-10 in ozone-induced pulmonary inflammation. Environ Health Perspect 118:1721–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bönig H, Packeisen J, Röhne B, Hempel L, Hannen M, Klein-Vehne A, Burdach S, Körholz D (1998) Interaction between interleukin 10 and interleukin 6 in human B-cell differentiation. Immunol Inves 27:267–280

    Article  Google Scholar 

  • Chen W, Wang X, Lv X, Tian Y, Xu Y, Mao Q, Shang M, Li X, Huang Y, Yu X (2014) Characterization of the secreted cathepsin B cysteine proteases family of the carcinogenic liver fluke Clonorchis sinensis. Parasitol Res 113:3409–3418

    Article  PubMed  Google Scholar 

  • Dalton JP, Robinson MW, Mulcahy G, O'Neill SM, Donnelly S (2013) Immunomodulatory molecules of Fasciola hepatica: candidates for both vaccine and immunotherapeutic development. Vet Parasitol 195:272–285

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimpoor S, Pakzad SR, Ajdary S (2013) IgG1 and IgG2a profile of serum antibodies to Leishmania major amastigote in BALB/c and C57BL/6Mice. Iran J Allergy Asthma Immunol 12:361–367

    CAS  PubMed  Google Scholar 

  • El-Ahwany E, Rabia I, Nagy F, Zoheiry M, Diab T, Zada S (2012) Protective role of purified cysteine proteinases against Fasciola gigantica infection in experimental animals. Korean J Parasitol 50:45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fürst T, Keiser J, Utzinger J (2012) Global burden of human food-borne trematodiasis: a systematic review and meta-analysis. Lancet Infect Dis 12:210–221

    Article  PubMed  Google Scholar 

  • Hong ST, Fang Y (2012) Clonorchis sinensis and clonorchiasis, an update. Parasitol Int 61:17–24

    Article  CAS  PubMed  Google Scholar 

  • Hong HA, Huang JM, Khaneja R, Hiep LV, Urdaci MC, Cutting SM (2008) The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J Appl Microbiol 105:510–520

    Article  CAS  PubMed  Google Scholar 

  • Hung CY, Hurtgen BJ, Bellecourt M, Sanderson SD, Morgan EL, Cole GT (2012) An agonist of human complement fragment C5a enhances vaccine immunity against Coccidioides infection. Vaccine 30:4681–4690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishak K, Baptista A, Bianchi L et al (1995) Histological grading and staging of chronic hepatitis. J Hepatol 22:696–699

    Article  CAS  PubMed  Google Scholar 

  • Isticato R, Sirec T, Treppiccione L, Maurano F, De Felice M, Rossi M, Ricca E (2013) Non-recombinant display of the B subunit of the heat labile toxin of Escherichia coli on wild type and mutant spores of Bacillus subtilis. Microb Cell Factories 12:98

    Article  Google Scholar 

  • Kishimoto T (2006) Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther Suppl 2:S2

    Article  Google Scholar 

  • Knecht LD, Pasini P, Daunert S (2011) Bacterial spores as platforms for bioanalytical and biomedical applications. Anal Bioanal Chem 400:977–989

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Kim IS, Sohn WM, Lee J, Yong TS (2006) Vaccination with DNA encoding cysteine proteinase confers protective immune response to rats infected with Clonorchis sinensis. Vaccine 24:2358–2366

    Article  CAS  PubMed  Google Scholar 

  • Li S, Chung YB, Chung BS, Choi MH, Yu JR, Hong ST (2004) The involvement of the cysteine proteases of Clonorchis sinensis metacercariae in excystment. Parasitol Res 93:36–40

    Article  PubMed  Google Scholar 

  • Lun ZR, Gasser RB, Lai DH, Li AX, Zhu XQ, Yu XB, Fang YY (2005) Clonorchiasis: a key foodborne zoonosis in China. Lancet Infect Dis 5:31–41

    Article  PubMed  Google Scholar 

  • Lv X, Chen W, Wang X, Li X, Sun J, Deng C, Men J, Tian Y, Zhou C, Lei H, Liang C, Yu X (2012) Molecular characterization and expression of a cysteine protease from Clonorchis sinensis and its application for serodiagnosis of clonorchiasis. Parasitol Res 110:2211–2219

    Article  PubMed  Google Scholar 

  • Nicholson WL, Setlow P (1990) Sporulation, germination and outgrowth. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. Chichester, UK, John Wiley & Sons Ltd, pp 391–450

    Google Scholar 

  • Petney TN, Andrews RH, Saijuntha W, Wenz-Mücke A, Sithithaworn P (2013) The zoonotic, fish-borne liver flukes Clonorchis sinensis, Opisthorchis felineus and Opisthorchis viverrini. Int J Parasitol 43:1031–1046

    Article  PubMed  Google Scholar 

  • Qian MB, Chen YD, Yan F (2013) Time to tackle clonorchiasis in China. Infect Dis Poverty 2(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian MB, Utzinger J, Keiser J, Zhou XN (2016) Clonorchiasis. Lancet 387:800–810

    Article  PubMed  Google Scholar 

  • Qu H, Xu Y, Sun H, Lin J, Yu J, Tang Z, Shen J, Liang C, Li S, Chen W, Li X, Wu Z, Huang Y, Yu X (2014) Systemic and local mucosal immune responses induced by orally delivered Bacillus subtilis spore expressing leucine aminopeptidase 2 of Clonorchis sinensis. Parasitol Res 113:3095–3103

    Article  PubMed  Google Scholar 

  • Rosales-Mendoza S, Angulo C (2015) Bacillus subtilis comes of age as a vaccine production host and delivery vehicle. Expert Rev Vaccines 14:1135–1148

    CAS  PubMed  Google Scholar 

  • Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21

    Article  CAS  PubMed  Google Scholar 

  • Shareef PA, Abidi SM (2014) Cysteine protease is a major component in the excretory/secretory products of Euclinostomum heterostomum (Digenea: Clinostomidae). Parasitol Res 113:65–71

    Article  PubMed  Google Scholar 

  • Sibley L, Reljic R, Radford DS, Huang JM, Hong HA, Cranenburgh RM, Cutting SM (2014) Recombinant Bacillus subtilis spores expressing MPT64 evaluated as a vaccine against tuberculosis in the murine model. FEMS Microbiol Lett 358:170–179

    Article  CAS  PubMed  Google Scholar 

  • Stasiłojć M, Hinc K, Peszyńska-Sularz G, Obuchowski M, Iwanicki A (2015) Recombinant Bacillus subtilis spores elicit Th1/Th17-polarized immune response in a murine model of Helicobacter pylori vaccination. Mol Biotechnol 57:685–691

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang ZL, Huang Y, Yu XB (2016a) Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiology, pathogenesis, omics, prevention and control. Infect Dis Poverty 5:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Shang M, Chen T, Ren P, Sun H, Qu H, Lin Z, Zhou L, Yu J, Jiang H, Zhou X, Li X, Huang Y, Xu J, Yu X (2016b) The immunological characteristics and probiotic function of recombinant Bacillus subtilis spore expressing Clonorchis sinensis cysteine protease. Parasit Vectors 9:648

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor GA, Feng CG, Sher A (2007) Control of IFN-gamma-mediated host resistance to intracellular pathogens by immunity-related GTPases (p47 GTPases). Microbes Infect 9:1644–1651

    Article  CAS  PubMed  Google Scholar 

  • Teixeira C, Gomes JR, Gomes P (2011) Falcipains, Plasmodium falciparum cysteine proteases as key drug targets against malaria. Curr Med Chem 18:1555–1572

    Article  CAS  PubMed  Google Scholar 

  • Toledo R, Esteban JG, Fried B (2012) Current status of food-borne trematode infections. Eur J Clin Microbiol Infect Dis 31:1705–1718

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liang C, Chen W, Fan Y, Hu X, Xu J, Yu X (2009) Experimental model in rats for study on transmission dynamics and evaluation of Clonorchis sinensis infection immunologically, morphologically, and pathologically. Parasitol Res 106:15–21

    Article  PubMed  Google Scholar 

  • Wang X, Chen W, Huang Y, Sun J, Men J, Liu H, Luo F, Guo L, Lv X, Deng C, Zhou C, Fan Y, Li X, Huang L, Hu Y, Liang C, Hu X, Xu J, Yu X (2011) The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol 12:R107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Chen W, Tian Y, Mao Q, Lv X, Shang M, Li X, Yu X, Huang Y (2014) Surface display of Clonorchis sinensis enolase on Bacillus subtilis spores potentializes an oral vaccine candidate. Vaccine 32:1338–1345

    Article  CAS  PubMed  Google Scholar 

  • WHO (2016) Foodborne trematodiases. http://www.who.int/mediacentre/factsheets/fs368/en/. Accessed 25 Mar 2017

  • Xu Y, Liang P, Bian M, Chen W, Wang X, Lin J, Shang M, Qu H, Wu Z, Huang Y, Yu X (2016) Interleukin-13 is involved in the formation of liver fibrosis in Clonorchis sinensis-infected mice. Parasitol Res 115:2653–2660

    Article  PubMed  Google Scholar 

  • Zhao K, Wang H, Wu C (2011) The immune responses of HLA-A*0201 restricted SARS-CoV S peptide-specific CD8+ T cells are augmented in varying degrees by CpG ODN, nI:C and R848. Vaccine 29:6670–6678

    Article  CAS  PubMed  Google Scholar 

  • Zhou F (2009) Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol 28:239–260

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Xia H, Hu X, Huang Y, Li Y, Li L, Ma C, Chen X, Hu F, Xu J, Lu F, Wu Z, Yu X (2008) Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine 26:1817–1825

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research and Development Project of China (973 project; No.2010CB530000), the Science and Technology Planning Project of Guangdong Province (No. 2013B010404010, No. 2014B020203001 and No. 2016A050502008) and Innovative Research Teams Project of South Wisdom Valley, Shunde, Guangdong province (2013CXTD03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Huang or Xinbing Yu.

Ethics declarations

All animal experiments were conducted under the Institutional Animal Care and Use Committee of Sun Yat-Sen University (Permit Number: SYXK (Guangdong) 2010–0107).

Conflict of interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Tang, Z., Shang, M. et al. Comparative analysis of immune effects in mice model: Clonorchis sinensis cysteine protease generated from recombinant Escherichia coli and Bacillus subtilis spores. Parasitol Res 116, 1811–1822 (2017). https://doi.org/10.1007/s00436-017-5445-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-017-5445-7

Keywords

Navigation