Skip to main content

Advertisement

Log in

Evaluation of the activity of new cationic carbosilane dendrimers on trophozoites and cysts of Acanthamoeba polyphaga

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Dendrimers are repetitively branched molecules with a broad spectrum of applications, mainly for their antimicrobial properties and as nanocarriers for other molecules. Recently, our research group have synthesized and studied their activity against Acanthamoeba sp., causative agent of a severe ocular disease in humans: Acanthamoeba keratitis. New cationic carbosilane dendrimers were tested against the protozoa forms at different concentrations and for different incubation times. Trophozoite viability was determined by manual counting and cyst viability by observing excystment in microplates with fresh culture medium. Cytotoxicity was checked on HeLa cells using the microculture tetrazolium assay. Alterations were observed by optical microscopy and by flow cytometry staining with propidium iodide. Six out of the 18 dendrimers tested were non-cytotoxic and effective against the trophozoite form, having one of them (dendrimer 14 with an IC50 of 2.4 + 0.1 mg/L) a similar activity to chlorhexidine digluconate (IC50 1.7 + 0.1 mg/L). This dendrimer has a polyphenoxo core and a sulphur atom close to the six −NH3+ terminal groups. On the other hand, only two dendrimers showed some effect against cysts (dendrimers 14 and 17). However, their minimum cysticidal concentrations were cytotoxic and less effective than the control drug. The alterations on the amoeba morphology produced by the treatment with dendrimers were size reduction, increased complexity, loss of acanthopodia and cell membrane disruption. In conclusion, these results suggest that some dendrimers may be studied in animal models to test their effect and that new dendrimers with similar features should be synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnáiz E, Doucede LI, García-Gallego S, Urbiola K, Gómez R, Tros de Ilarduya C, de la Mata FJ (2012) Synthesis of cationic carbosilane dendrimers via click chemistry and their use as effective carriers for DNA transfection into cancerous cells. Mol Pharm 9:433–447. doi:10.1021/mp200542j

    Article  PubMed  Google Scholar 

  • Astorga B, Lorenzo-Morales J, Martín-Navarro CM, Alarcón V, Moreno J, González AC, Navarrete E, Piñero JE, Valladares B (2011) Acanthamoeba belonging to T3, T4, and T11: genotypes isolated from air-conditioning units in Santiago, Chile. J Eukaryot Microbiol 58:542–544. doi:10.1111/j.1550-7408.2011.00584.x

    Article  PubMed  Google Scholar 

  • Bang S, Edell E, Eghrari AO, Gottsch JD (2010) Treatment with voriconazole in 3 eyes with resistant Acanthamoeba keratitis. Am J Ophthalmol 149:66–69. doi:10.1016/j.ajo.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  • Bermejo JF, Ortega P, Chonco L, Eritja R, Samaniego R, Müllner M, de Jesus E, de la Mata FJ, Flores JC, Gomez R, Muñoz-Fernandez A (2007) Water-soluble carbosilane dendrimers: synthesis biocompatibility and complexation with oligonucleotides; evaluation for medical applications. Chemistry 13:483–495. doi:10.1002/chem.200600594

    Article  CAS  PubMed  Google Scholar 

  • Bouyer S, Imbert C, Daniault G, Cateau E, Rodier MH (2007) Effect of caspofungin on trophozoites and cysts of three species of Acanthamoeba. J Antimicrob Chemother 59:122–124. doi:10.1093/jac/dkl451

    Article  CAS  PubMed  Google Scholar 

  • Chen CZ, Beck-Tan NC, Dhurjati P, van Dyk TK, LaRossa RA, Cooper SL (2000) Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure-activity studies. Biomacromolecules 1:473–480. doi:10.1021/bm0055495

    Article  CAS  PubMed  Google Scholar 

  • Chomicz L, Padzik M, Graczyk Z, Starosciak B, Graczyk TK, Naprawska A, Oledzka G, Szostakowska B (2010) Acanthamoeba castellanii: in vitro effects of selected biological, physical and chemical factors. Exp Parasitol 126:103–105. doi:10.1016/j.exppara.2010.01.025

    Article  CAS  PubMed  Google Scholar 

  • Elder MJ, Kilvington S, Dart JK (1994) A clinicopathologic study of in vitro sensitivity testing and Acanthamoeba keratitis. Inv Ophthalmol Vis Sci 35:1059–1064

    CAS  Google Scholar 

  • Ferrari G, Matuska A, Rama P (2011) Double-biguanide therapy for resistant Acanthamoeba keratitis. Case Rep Ophthalmol 2:338–342. doi:10.1159/000334270

    Article  PubMed Central  PubMed  Google Scholar 

  • Ficker L, Seal D, Warhurst D, Wright P (1990) Acanthamoeba keratitis resistance to medical therapy. Eye 4:835–838. doi:10.1038/eye.1990.132

    Article  PubMed  Google Scholar 

  • Fuentes-Paniagua E, Hernández-Ros JM, Sánchez-Milla M, Camero MA, Maly M, Pérez-Serrano J, Copa-Patiño JL, Sánchez-Nieves J, Soliveri J, Gómez R, de la Mata FJ (2014) Carbosilane cationic dendrimers synthesized by thiol–ene click chemistry and their use as antibacterial agents. RSC Adv 4:1256–1265. doi:10.1039/C3RA45408H

    Article  CAS  Google Scholar 

  • Fürnkranz U, Nagl M, Gottardi W, Köhsler M, Aspöck H, Walochnik J (2008) Cytotoxic activity of N-chlorotaurine on Acanthamoeba spp. Antimicrob Agents Chemother 52:470–476. doi:10.1128/AAC. 00715-07

    Article  PubMed Central  PubMed  Google Scholar 

  • Heredero-Bermejo I, San Juan Martin C, Soliveri de Carranza J, Copa-Patiño JL, Perez-Serrano J (2012) Acanthamoeba castellanii: in vitro UAH-T17c3 trophozoite growth study in different culture media. Parasitol Res 110:2563–2567. doi:10.1007/s00436-011-2761-1

    Article  CAS  PubMed  Google Scholar 

  • Heredero-Bermejo I, Copa-Patiño JL, Soliveri J, Carcia-Gallego S, Rasines B, Gomez R, de la Mata FJ, Perez-Serrano J (2013) In vitro evaluation of the effectiveness of new water-stable carbosilane dendrimers against Acanthamoeba castellanii UAH-T17c3 trophozoites. Parasitol Res 112:961–969. doi:10.1007/s00436-012-3216-z

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Shai S (1999) Severe Acanthamoeba sclerokeratitis in a non-contact lens wearer. Acta Ophthalmol Scand 77:347–348. doi:10.1034/j.1600-0420.1999.770321.x

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim MA, Yusof MS, Amin NM (2014) Anti-amoebic properties of carbonyl thiourea derivatives. Molecules 19:5191–5204. doi:10.3390/molecules19045191

    Article  CAS  PubMed  Google Scholar 

  • Jimenez JL, Pion M, de la Mata FJ, Gomez R, Muñoz E, Leal M, Muñoz-Fernandez MA (2012) Dendrimers as topical microbicides with activity against HIV. New J Chem 36:299–309. doi:10.1039/C1NJ20396G

    Article  CAS  Google Scholar 

  • John DT, John RA (1996) Viability of pathogenic Acanthamoeba and Naegleria and virulence of N. fowleri during long-term cryoperservation. Folia Parasitol 43:43–46

    CAS  PubMed  Google Scholar 

  • Khan NA (2006) Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 30:564–595. doi:10.1111/j.1574-6976.2006.00023.x

    Article  PubMed  Google Scholar 

  • Khan NA (2009) Acanthamoeba. Biology and pathogenesis. Caister Academic Press, Chicago

    Google Scholar 

  • Kobayashi T, Gibbon L, Mito T, Shiraishi A, Uno T, Ohashi Y (2011) Efficacy of commercial soft contact lens disinfectant solutions against Acanthamoeba. Jpn J Ophthalmol 55:547–557. doi:10.1007/s10384-011-0062-y

    Article  CAS  PubMed  Google Scholar 

  • Kulsoom H, Baig AM, Siddiqui R, Khan NA (2014) Combined drug therapy in the management of granulomatous amoebic encephalitis due to Acanthamoeba spp., and Balamuthia mandrillaris. Exp Parasitol. doi:10.1016/j.exppara.2014.03.025

    PubMed  Google Scholar 

  • Lorenzo-Morales J, Kliescikova J, Martinez-Carretero E, De Pablos LM, Profotova B, Nohynkova E, Osuna A, Valladares B (2008) Glycogen Phosphorylase in Acanthamoeba spp.: determining the role of the enzyme during the encysment process using RNA interference. Eukaryot Cell 7:509–517. doi:10.1128/EC.00316-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma P, Visvesvara GS, Martinez AJ, Theodore FH, Dagget PM, Sawyer TK (1990) Naeglaria and Acanthamoeba infections. Rev Infect Dis 12:490–513. doi:10.1093/clinids/12.3.490

    Article  CAS  PubMed  Google Scholar 

  • Mahgoub MA (2010) Acanthamoeba keratitis. Parasitol United J 3:9–18

    Google Scholar 

  • Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16:273–307. doi:10.1128/CMR. 16.2.273-307.2003

    Article  PubMed Central  PubMed  Google Scholar 

  • Mattana A, Biancu G, Alberti L, Accardo A, Delogu G, Fiori PL, Cappuccinelli P (2004) In vitro evaluation of the effectiveness of the macrolide rokitamycin and chlorpromazine against Acanthamoeba castellanii. Antimicrob Agents Chemother 48:4520–4527. doi:10.1128/AAC.48.12.4520-4527.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40:173–190. doi:10.1039/b901839p

    Article  CAS  PubMed  Google Scholar 

  • Mogoa E, Bodet C, Legube B, Héchard Y (2010) Acanthamoeba castellanii: cellular changes induced by chlorination. Exp Parasitol 126:97–102. doi:10.1016/j.exppara.2009.12.005

    Article  CAS  PubMed  Google Scholar 

  • Mogoa E, Bodet C, Morel F, Rodier MH, Legube B, Héchard Y (2011) Cellular response of the amoeba Acanthamoeba castellanii to chlorine, chlorine dioxide, and monochloramine treatments. Appl Environ Microbiol 77:4974–4980. doi:10.1128/AEM. 00234-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murdoch D, Gray TB, Cursons R, Parr D (1998) Acanthamoeba keratitis in New Zealand, including two cases with in vivo resistance to polyhexamethylene biguanide. Aust N Z J Ophthalmol 26:231–236. doi:10.1111/j.1442-9071.1998.tb01317.x

    Article  CAS  PubMed  Google Scholar 

  • Narasimhan S, Madhavan HN, Lily T (2002) Development and application of an in vitro susceptibility test for Acanthamoeba species isolated from keratitis to polyhexamethylene biguanide and chlorexidine. Cornea 21:203–205

    Article  PubMed  Google Scholar 

  • Ortega P, Copa-Patino JL, Munoz-Fernandez MA, Soliveri J, Gomez R, de la Mata FJ (2008) Amine and ammonium functionalization of chloromethylsilane-ended dendrimers. Antimicrobial activity studies. Org Biomol Chem 6:3264–3269. doi:10.1039/b809569h

    Article  CAS  PubMed  Google Scholar 

  • Ortega P, Macarena Cobaleda B, Hernandez-Ros JM, Fuentes-Paniagua E, Sanchez-Nieves J, Tarazona MP, Copa-Patino JL, Soliveri J, de la Mata FJ, Gomez R (2011) Hyperbranched polymers versus dendrimers containing a carbosilane frame work and terminal ammonium group as bacterial agents. Org Biomol Chem 9:5238–5248. doi:10.1039/c1ob05321c

    Article  CAS  PubMed  Google Scholar 

  • Osato MS, Robinson NM, Wilhelmus KR, Jones DB (1991) In vitro evaluation of antimicrobial compounds for cysticidal activity against Acanthamoeba. Rev Infect Dis 13:431–435. doi:10.1093/clind/13.Supplement_5.S431

    Article  Google Scholar 

  • Pedziwiatr-Werbicka E, Fuentes E, Dzmitruk V, Dzmitruk V, Sánchez-Nieves J, Sudas M, Drozd E, Shakhbazau A, Shcharbin D, de la Mata FJ, Gomez-Ramirez R, Munoz-Fernandez MA, Bryszewska M (2013) Novel 'Si-C' carbosilane dendrimers as carriers for anti-HIV nucleic acids: studies on complexation and interaction with blood cells. Colloids Surf B Biointerfaces 109:183–189. doi:10.1016/j.colsurfb.2013.03.045

    Article  CAS  PubMed  Google Scholar 

  • Polat ZA, Vural A (2012) Effect of combined chlorhexidine gluconate and neosporin on experimental keratitis with two pathogenic strains of Acanthamoeba. Parasitol Res 110:1945–1950. doi:10.1007/s00436-011-2722-8

    Article  PubMed  Google Scholar 

  • Rasines B, Hernandez-Ros JM, de las Cuevas N, Copa-Patino JL, Soliveri J, Munoz-Fernandez MA, Gomez R, de la Mata FJ (2009) Water-stable ammonium-terminated carbosilane dendrimers as efficient antibacterial agents. Dalton Trans 40:8704–8713. doi:10.1039/b909955g

    Article  PubMed  Google Scholar 

  • Rasines B, Sánchez-Nieves J, Maiolo M, Maly M, Chonco L, Jiménez JL, Muñoz-Fernández MA, de la Mata FJ, Gómez R (2012) Synthesis, structure and molecular modelling of anionic carbosilane dendrimers. Dalton Trans 41:12733–12748. doi:10.1039/c2dt31099f

    Article  CAS  PubMed  Google Scholar 

  • Ródio C, da Rocha VD, Kowalski KP, Panatieri LF, von Poser G, Rott MB (2008) In vitro evaluation of the amebicidal activity of Pterocaulon polystachyum (Asteraceae) against trophozoites of Acanthamoeba castellanii. Parasitol Res 104:191–194. doi:10.1007/s00436-008-1186-y

    Article  PubMed  Google Scholar 

  • Romero EL, Morilla MJ (2010) Nanotechnological approaches against Chagas disease. Adv Drug Deliv Rev 62:576–588. doi:10.1016/j.addr.2009.11.025

    Article  CAS  PubMed  Google Scholar 

  • Rusciano G, Capriglione P, Pesce G, Del Prete S, Cennamo G, Di Cave D, Cerulli L, Sasso A (2013) Raman microspectroscopy analysis in the treatment of Acanthamoeba keratitis. PLoS One 8:e72127. doi:10.1371/journal.pone.0072127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Santos-Magalhaes NS, Mosqueira VC (2010) Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 62:560–575. doi:10.1016/j.addr.2009.11.024

    Article  CAS  PubMed  Google Scholar 

  • Schuster FL, Visvevara GS (2004) Opportunistic amoebae: challenges in prophylaxis and treatment. Drug Resist Updat 7:41–51. doi:10.1016/j.drup.2004.01.002

    Article  CAS  PubMed  Google Scholar 

  • Seal DV (2003) Acanthamoeba keratitis update-incidence, molecular epidemiology and new drugs for treatment. Eye 17:893–905. doi:10.1038/sj.eye.6700563

    Article  CAS  PubMed  Google Scholar 

  • Sheng WH, Hung CC, Huang HH, Liang SY, Cheng YJ, Ji DD, Chang SC (2009) First case of granulomatous amebic encephalitis caused by Acanthamoeba castellanii in Taiwan. Am J Trop Med Hyq 81:277–279

    Google Scholar 

  • Siddiqui R, Khan NA (2012) Biology and pathogenesis of Acanthamoeba. Parasit Vectors 5:6. doi:10.1186/1756-3305-5-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Sison JP, Kemper CA, Loveless M, McShane D, Visvesvara GS, Deresinski SC (1995) Disseminated Acanthamoeba infection in patients with AIDS: case reports and review. Clin Infect Dis 20:1207–1216. doi:10.1093/clinids/20.5.1207

    Article  CAS  PubMed  Google Scholar 

  • Storey MV, Winiecka-Krusnell J, Ashbolt NJ, Stenström TA (2004) The efficacy of heat and chlorine treatment against thermotolerant Acanthamoeba and Legionellae. J Infect Dis 36:656–662. doi:10.1080/00365540410020785

    CAS  Google Scholar 

  • Trabelsi H, Dendana F, Sellami H, Cheikhrouhou F, Neji S, Makni F, Ayadi A (2012) Pathogenic free-living amoebae: epidemiology and clinical review. Pathol Biol 60:399–405. doi:10.1016/j.patbio.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  • Tyssen D, Henderson SA, Johnson A, Sterjovski J, Moore K, La J, Zanin M, Sonza S, Karellas P, Giannis MP, Krippner G, Wesselingh S, McCarthy T, Gorry PR, Ramsland PA, Cone R, Paull JR, Lewis GR, Tachedjian G (2010) Structure activity relationship of dendrimer microbicides with dual action antiviral activity. PLoS One 5:e12309. doi:10.1371/journal.pone.0012309

    Article  PubMed Central  PubMed  Google Scholar 

  • Visvesvara GS (2010) Amebic meningoencephalitides and keratitis: challenges in diagnosis and treatment. Curr Opin Infect Dis 23:590–594. doi:10.1097/QCO.0b013e32833ed78b

    Article  CAS  PubMed  Google Scholar 

  • Visvesvara GS, Moura H, Schuster FL (2007) Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri and Sappinia diploidea. FEMS Immunol Med Microbiol 50:1–26. doi:10.1111/j.1574-695X.2007.00232.x

    Article  CAS  PubMed  Google Scholar 

  • Walochnik J, Picher O, Aspöck C, Ullmann M, Sommer R, Aspöck H (1999) Interactions of “Limax amoebae” and gram-negative bacteria: experimental studies and review of current problems. Tokai J Exp Clin Med 23:273–278

    Google Scholar 

  • Walochnik J, Obwaller A, Gruber F, Mildner M, Tschachler E, Suchomel M, Duchêne M, Auer H (2009) Anti-Acanthamoeba efficacy and toxicity of miltefosine in an organotypic skin equivalent. J Antimicrob Chemother 64:539–545. doi:10.1093/jac/dkp215

    Article  CAS  PubMed  Google Scholar 

  • Weber N, Ortega P, Clemente MI, Scharbin D, Bryszewska M, de la Mata FJ, Gómez R, Muñoz-Fernández MA (2008) Characterization of carbosilane dendrimers as affective carriers of siRNA to HIV-infected lymphocytes. J Control Release 132:55–64. doi:10.1016/j.jconrel.2008.07.035

    Article  CAS  PubMed  Google Scholar 

  • Wink MA, Caumo K, Rott MB (2011) Prevalence of Acanthamoeba from tap water in rio grande do Sul, Brazil. Curr Microbiol 63:464–469. doi:10.1007/s00284-011-0003-5

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Isabel Trabado and Cristina de Miguel (Cell Culture Unit—CAI Medicina y Biología de la Universidad de Alcalá) for technical assistance and Dr. Javier Martínez (Departamento de Biomedicina y Biotecnología, Universidad de Alcalá) for his valuable help.

Financial support

This work was supported by the grants provided from MICINN (CTQ2011-2325), CAM (S2010/BMD-2351) and CIBER-BBN. Ms. Irene Heredero-Bermejo and Ms. Elena Fuentes-Paniagua wish to thank the Ministerio de Educación y Ciencia for the fellowships (grants no FPU AP2010-1471 and AP2010-1470).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Heredero-Bermejo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heredero-Bermejo, I., Copa-Patiño, J.L., Soliveri, J. et al. Evaluation of the activity of new cationic carbosilane dendrimers on trophozoites and cysts of Acanthamoeba polyphaga . Parasitol Res 114, 473–486 (2015). https://doi.org/10.1007/s00436-014-4205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4205-1

Keywords

Navigation