Skip to main content
Log in

Molecular characterization and serological reactivity of a vacuolar ATP synthase subunit ε-like protein from Clonorchis sinensis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The vacuolar ATPase enzyme complex (V-ATPase) pumps protons across membranes, energized by hydrolysis of ATP. Extensive investigations on structural and biochemical features of these molecules have implied their importance in the physiological process. In this study, a full-length sequence encoding a vacuolar ATP synthase subunit ε-like protein of Clonorchis sinensis (CsATP-ε) was isolated from our cDNA library. The hypothetical 226 amino acid sequence shared 76 % identity with ATP-ε proteins of Schistosoma japonicum and above 55 % identity with ATP-ε proteins from human and other eukaryotes. Characteristic Asp140 amino acid residues and seven B-cell epitopes were predicted in this sequence. The complete coding sequence of the gene was expressed in Escherichia coli. Recombinant CsATP-ε (rCsATP-ε) protein could be probed by anti-rCsATP-ε rat serum and C.sinensis-infected human serum in Western blotting experiment, indicating that it is an antigen of strong antigenicity. The high level of antibody titers (1:204,800) showed that CsATP-ε has a powerful immunogenicity. Both the increased level and the change trend of IgG1/IgG2a subtypes in serum showed that the rCsATP-ε can induce strong combined Th1/Th2 immune responses in rats and stimulate the immune response changes to the dominant Th2 from Th1 along with long time infection. The results of immunoblot and immunolocalization demonstrated that CsATP-ε was consecutively expressed at various developmental stages of the parasite, which was supported by real-time PCR analysis. In immunohistochemistry, CsATP-ε was localized on the intestine, vitellarium, and testicle of an adult worm and excretory bladder of metacercaria, implying that CsATP-ε may relate to energy intake and metabolism. This fundamental study would contribute to further researches that are related to growth and development and immunomodulation of C. sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allman E, Johnson D, Nehrke K (2009) Loss of the apical V-ATPase a-subunit VHA-6 prevents acidification of the intestinal lumen during a rhythmic behavior in C. elegans. Am J Physiol Cell Physiol 297(5):C1071–C1081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Balklava Z, Pant S, Fares H, Grant BD (2007) Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat Cell Biol 9(9):1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Brown D, Breton S (2000) H(+)V-ATPase-dependent luminal acidification in the kidney collecting duct and the epididymis/vas deferens: vesicle recycling and transcytotic pathways. J Exp Biol 203(Pt 1):137–145

    CAS  PubMed  Google Scholar 

  • Chen W, Wang X, Deng C, Lv X, Fan Y, Men J, Liang C, Yu X (2011) Molecular cloning and characterization of a novel ras-related protein (rap2) from Clonorchis sinensis. Parasitol Res 108(4):1021–1026

    Article  PubMed  Google Scholar 

  • Choi YK, Yoon BI, Won YS, Lee CH, Hyun BH, Kim HC, Oh GT, Kim DY (2003) Cytokine responses in mice infected with Clonorchis sinensis. Parasitol Res 91(2):87–93

    Article  PubMed  Google Scholar 

  • Choi BI, Han JK, Hong ST, Lee KH (2004) Clonorchiasis and cholangiocarcinoma: etiologic relationship and imaging diagnosis. Clin Microbiol Rev 17(3):540–552, table of contents

    Article  PubMed Central  PubMed  Google Scholar 

  • Cross RL, Muller V (2004) The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratio. FEBS Lett 576(1–2):1–4

    Article  CAS  PubMed  Google Scholar 

  • Doherty RD, Kane PM (1993) Partial assembly of the yeast vacuolar H(+)-ATPase in mutants lacking one subunit of the enzyme. J Biol Chem 268(22):16845–16851

    CAS  PubMed  Google Scholar 

  • Duan X, Lu X, Li J, Liu Y (2008) Novel binding between pre-membrane protein and vacuolar ATPase is required for efficient dengue virus secretion. Biochem Biophys Res Commun 373(2):319–324

    Article  CAS  PubMed  Google Scholar 

  • Fethiere J, Venzke D, Diepholz M, Seybert A, Geerlof A, Gentzel M, Wilm M, Bottcher B (2004) Building the stator of the yeast vacuolar-ATPase: specific interaction between subunits E and G. J Biol Chem 279(39):40670–40676

    Article  CAS  PubMed  Google Scholar 

  • Forgac M (1999) Structure and properties of the vacuolar (H+)-ATPases. J Biol Chem 274(19):12951–12954

    Article  CAS  PubMed  Google Scholar 

  • Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8(11):917–929

    Article  CAS  PubMed  Google Scholar 

  • Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, Villa A (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25(3):343–346

    Article  CAS  PubMed  Google Scholar 

  • Fried B, Reddy A, Mayer D (2011) Helminths in human carcinogenesis. Cancer Lett 305(2):239–249

    Article  CAS  PubMed  Google Scholar 

  • Futai M, Oka T, Sun-Wada G, Moriyama Y, Kanazawa H, Wada Y (2000) Luminal acidification of diverse organelles by V-ATPase in animal cells. J Exp Biol 203(Pt 1):107–116

    CAS  PubMed  Google Scholar 

  • Gigi E, Raptopoulou-Gigi M, Kalogeridis A, Masiou S, Orphanou E, Vrettou E, Lalla TH, Sinakos E, Tsapas V (2008) Cytokine mRNA expression in hepatitis C virus infection: TH1 predominance in patients with chronic hepatitis C and TH1-TH2 cytokine profile in subjects with self-limited disease. J Viral Hepat 15(2):145–154

    CAS  PubMed  Google Scholar 

  • Hinton A, Bond S, Forgac M (2009a) V-ATPase functions in normal and disease processes. Pflugers Arch 457(3):589–598

    Article  CAS  PubMed  Google Scholar 

  • Hinton A, Sennoune SR, Bond S, Fang M, Reuveni M, Sahagian GG, Jay D, Martinez-Zaguilan R, Forgac M (2009b) Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem 284(24):16400–16408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hurtado-Lorenzo A, Skinner M, El Annan J, Futai M, Sun-Wada GH, Bourgoin S, Casanova J, Wildeman A, Bechoua S, Ausiello DA, Brown D, Marshansky V (2006) V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 8(2):124–136

    Article  CAS  PubMed  Google Scholar 

  • Jefferies KC, Cipriano DJ, Forgac M (2008) Function, structure and regulation of the vacuolar (H+)-ATPases. Arch Biochem Biophys 476(1):33–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ji YJ, Choi KY, Song HO, Park BJ, Yu JR, Kagawa H, Song WK, Ahnn J (2006) VHA-8, the E subunit of V-ATPase, is essential for pH homeostasis and larval development in C. elegans. FEBS Lett 580(13):3161–3166

    Article  CAS  PubMed  Google Scholar 

  • Jones RP, Durose LJ, Findlay JB, Harrison MA (2005) Defined sites of interaction between subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the stator structure of the vacuolar H+-ATPase. Biochemistry 44(10):3933–3941

    Article  CAS  PubMed  Google Scholar 

  • Kubisch R, Frohlich T, Arnold GJ, Schreiner L, von Schwarzenberg K, Roidl A, Vollmar AM, Wagner E (2013) V-ATPase inhibition by archazolid leads to lysosomal dysfunction resulting in impaired cathepsin B activation in vivo. Int J Cancer. doi:10.1002/ijc.28562

    PubMed  Google Scholar 

  • Li YP, Chen W, Liang Y, Li E, Stashenko P (1999) Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 23(4):447–451

    Article  CAS  PubMed  Google Scholar 

  • Li S, Chung YB, Chung BS, Choi MH, Yu JR, Hong ST (2004) The involvement of the cysteine proteases of Clonorchis sinensis metacercariae in excystment. Parasitol Res 93(1):36–40

    Article  PubMed  Google Scholar 

  • Liang C, Hu XC, Lv ZY, Wu ZD, Yu XB, Xu J, Zheng HQ (2009) Experimental establishment of life cycle of Clonorchis sinensis. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 27(2):148–150

    PubMed  Google Scholar 

  • Liegeois S, Benedetto A, Garnier JM, Schwab Y, Labouesse M (2006) The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J Cell Biol 173(6):949–961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liegeois S, Benedetto A, Michaux G, Belliard G, Labouesse M (2007) Genes required for osmoregulation and apical secretion in Caenorhabditis elegans. Genetics 175(2):709–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim MK, Ju YH, Franceschi S, Oh JK, Kong HJ, Hwang SS, Park SK, Cho SI, Sohn WM, Kim DI, Yoo KY, Hong ST, Shin HR (2006) Clonorchis sinensis infection and increasing risk of cholangiocarcinoma in the Republic of Korea. Am J Trop Med Hyg 75(1):93–96

    PubMed  Google Scholar 

  • Loria-Cervera EN, Sosa-Bibiano EI, Villanueva-Lizama LE, Van Wynsberghe NR, Schountz T, Andrade-Narvaez FJ (2014) Cloning and sequence analysis of Peromyscus yucatanicus (Rodentia) Th1 (IL-12p35, IFN-gamma and TNF) and Th2 (IL-4, IL-10 and TGF-beta) cytokines. Cytokine 65(1):48–55

    Article  CAS  PubMed  Google Scholar 

  • Lun ZR, Gasser RB, Lai DH, Li AX, Zhu XQ, Yu XB, Fang YY (2005) Clonorchiasis: a key foodborne zoonosis in China. Lancet Infect Dis 5(1):31–41

    Article  PubMed  Google Scholar 

  • Lv X, Chen W, Wang X, Li X, Sun J, Deng C, Men J, Tian Y, Zhou C, Lei H, Liang C, Yu X (2012) Molecular characterization and expression of a cysteine protease from Clonorchis sinensis and its application for serodiagnosis of clonorchiasis. Parasitol Res 110(6):2211–2219

    Article  PubMed  Google Scholar 

  • Na BK, Kim SH, Lee EG, Kim TS, Bae YA, Kang I, Yu JR, Sohn WM, Cho SY, Kong Y (2006) Critical roles for excretory-secretory cysteine proteases during tissue invasion of Paragonimus westermani newly excysted metacercariae. Cell Microbiol 8(6):1034–1046

    Article  CAS  PubMed  Google Scholar 

  • Na BK, Kang JM, Sohn WM (2008) CsCF-6, a novel cathepsin F-like cysteine protease for nutrient uptake of Clonorchis sinensis. Int J Parasitol 38(5):493–502

    Article  CAS  PubMed  Google Scholar 

  • Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—nature's most versatile proton pumps. Nat Rev Mol Cell Biol 3(2):94–103

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rappas M, Niwa H, Zhang X (2004) Mechanisms of ATPases—a multi-disciplinary approach. Curr Protein Pept Sci 5(2):89–105

    Article  CAS  PubMed  Google Scholar 

  • Reiner SL, Wang ZE, Hatam F, Scott P, Locksley RM (1993) TH1 and TH2 cell antigen receptors in experimental leishmaniasis. Science 259(5100):1457–1460

    Article  CAS  PubMed  Google Scholar 

  • Sauer A, Rochet E, Lahmar I, Brunet J, Sabou M, Bourcier T, Candolfi E, Pfaff AW (2013) The local immune response to intraocular Toxoplasma re-challenge: less pathology and better parasite control through Treg/Th1/Th2 induction. Int J Parasitol 43(9):721–728

    Article  CAS  PubMed  Google Scholar 

  • Shin HR, Oh JK, Masuyer E, Curado MP, Bouvard V, Fang YY, Wiangnon S, Sripa B, Hong ST (2010) Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Sci 101(3):579–585

    Article  CAS  PubMed  Google Scholar 

  • Sripa B, Kaewkes S, Sithithaworn P, Mairiang E, Laha T, Smout M, Pairojkul C, Bhudhisawasdi V, Tesana S, Thinkamrop B, Bethony JM, Loukas A, Brindley PJ (2007) Liver fluke induces cholangiocarcinoma. PLoS Med 4(7):e201

    Article  PubMed Central  PubMed  Google Scholar 

  • Stevens TH, Forgac M (1997) Structure, function and regulation of the vacuolar (H+)-ATPase. Annu Rev Cell Dev Biol 13:779–808

    Article  CAS  PubMed  Google Scholar 

  • Sun-Wada GH, Toyomura T, Murata Y, Yamamoto A, Futai M, Wada Y (2006) The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells. J Cell Sci 119(Pt 21):4531–4540

    Article  CAS  PubMed  Google Scholar 

  • Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824(1):68–88

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liang C, Chen W, Fan Y, Hu X, Xu J, Yu X (2009) Experimental model in rats for study on transmission dynamics and evaluation of Clonorchis sinensis infection immunologically, morphologically, and pathologically. Parasitol Res 106(1):15–21

    Article  PubMed  Google Scholar 

  • Wang X, Chen W, Huang Y, Sun J, Men J, Liu H, Luo F, Guo L, Lv X, Deng C, Zhou C, Fan Y, Li X, Huang L, Hu Y, Liang C, Hu X, Xu J, Yu X (2011) The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol 12(10):R107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Chen W, Li X, Zhou C, Deng C, Lv X, Fan Y, Men J, Liang C, Yu X (2012) Identification and molecular characterization of a novel signaling molecule 14-3-3 epsilon in Clonorchis sinensis excretory/secretory products. Parasitol Res 110(4):1411–1420

    Article  PubMed  Google Scholar 

  • Yoo WG, Kim TI, Li S, Kwon OS, Cho PY, Kim TS, Kim K, Hong SJ (2009) Reference genes for quantitative analysis on Clonorchis sinensis gene expression by real-time PCR. Parasitol Res 104(2):321–328

    Article  PubMed  Google Scholar 

  • Young ND, Campbell BE, Hall RS, Jex AR, Cantacessi C, Laha T, Sohn WM, Sripa B, Loukas A, Brindley PJ, Gasser RB (2010) Unlocking the transcriptomes of two carcinogenic parasites, Clonorchis sinensis and Opisthorchis viverrini. PLoS Negl Trop Dis 4(6):e719

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang JW, Parra KJ, Liu J, Kane PM (1998) Characterization of a temperature-sensitive yeast vacuolar ATPase mutant with defects in actin distribution and bud morphology. J Biol Chem 273(29):18470–18480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Development Program of China (973 program; No. 2010CB530000).

Conflict of interest

All authors declared that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbing Yu.

Additional information

Xiaoli Lv and Lisi Huang contributed equally to this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, X., Huang, L., Chen, W. et al. Molecular characterization and serological reactivity of a vacuolar ATP synthase subunit ε-like protein from Clonorchis sinensis . Parasitol Res 113, 1545–1554 (2014). https://doi.org/10.1007/s00436-014-3799-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3799-7

Keywords

Navigation