Skip to main content

Advertisement

Log in

Molecular cloning and characterization of Schistosoma japonicum aldose reductase

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Antioxidant defense is an essential mechanism for schistosomes to cope with damage from host immune-generated reactive oxygen species. The evaluation of the effects of aldose reductase, an important enzyme that may be involved in this system, has long been neglected. In the present study, aldose reductase of Schistosoma japonicum (SjAR) was cloned and characterized. The activity of SjAR was assessed in vitro and was suppressed by the reported inhibitor, epalrestat. RT-PCR analysis revealed that SjAR was expressed at each of the development stages analyzed with increased levels in cercariae. The results also showed that SjAR was expressed at higher levels in adult male worms than in adult female worms. Indirect enzyme-linked immunosorbent assay and western blot analysis indicated that the purified recombinant SjAR (rSjAR) protein displayed a significant level of antigenicity. Immunolocalization analysis revealed that SjAR was mainly distributed in the gynecophoral canal of adult male worms. BALB/c mice immunized with rSjAR induced a 32.91 % worm reduction compared to the adjuvant group (P < 0.01). Moreover, a 28.27 % reduction in egg development in the liver (P > 0.05) and a 42.75 % reduction in egg development in the fecal samples (P < 0.05) were also observed. These results suggested that SjAR may be a potential new drug target or vaccine candidate for schistosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahir VB, Panchal MT, Tripathi AK, Koringa PG, Joshi CG (2010) Genetic polymorphism in the aldo-keto reductase family 1 member b1 (AKR1B1) gene of Murrah buffalo bulls (bubalus bubalis). Buffalo Bulletin 29(4):274–278

    Google Scholar 

  • Alger HM, Williams DL (2002) The disulfide redox system of Schistosoma mansoni and the importance of a multifunctional enzyme, thioredoxin glutathione reductase. Mol Biochem Parasitol 121(1):129–139

    Article  PubMed  CAS  Google Scholar 

  • Alger HM, Sayed AA, Stadecker MJ, Williams DL (2002) Molecular and enzymatic characterisation of Schistosoma mansoni thioredoxin. Int J Parasitol 32(10):1285–1292

    Article  PubMed  CAS  Google Scholar 

  • Alonso D, Munoz J, Gascon J, Valls ME, Corachan M (2006) Failure of standard treatment with praziquantel in two returned travelers with Schistosoma haematobium infection. AmJTrop Med Hyg 74(2):342–344

    Google Scholar 

  • Ashton PD, Harrop R, Shah B, Wilson RA (2001) The schistosome egg: development and secretions. Parasitology 122(Pt 3):329–338

    PubMed  CAS  Google Scholar 

  • Boumis G, Angelucci F, Bellelli A, Brunori M, Dimastrogiovanni D, Miele AE (2011) Structural and functional characterization of Schistosoma mansoni thioredoxin. Protein Sci 20(6):1069–1076

    Article  PubMed  CAS  Google Scholar 

  • Chen MG (2005) Use of praziquantel for clinical treatment and morbidity control of schistosomiasis japonica in China: a review of 30 years’ experience. Acta Trop 96(2–3):168–176

    PubMed  CAS  Google Scholar 

  • Cheng GF, Lin JJ, Shi Y, Jin YX, Fu ZQ, Jin YM, Zhou YC, Cai YM (2005) Dose-dependent inhibition of gynecophoral canal protein gene expression in vitro in the schistosome (Schistosoma japonicum) by RNA interference. Acta Biochim Biophys Sin (Shanghai) 37(6):386–390

    Article  CAS  Google Scholar 

  • Colciago A, Negri-Cesi P, Celotti F (2002) Pathogenesis of diabetic neuropathy—do hyperglycemia and aldose reductase inhibitors affect neuroactive steroid formation in the rat sciatic nerves? Exp Clin Endocrinol Diabetes 110(1):22–26

    Article  PubMed  CAS  Google Scholar 

  • Djoubissie PO, Snirc V, Sotnikova R, Zurova J, Kyselova Z, Skalska S, Gajdosik A, Javorkova V, Vlkovicova J, Vrbjar N, Stefek M (2006) In vitro inhibition of lens aldose reductase by (2-benzyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole-8-yl)-acetic acid in enzyme preparations isolated from diabetic rats. Gen Physiol Biophys 25(4):415–425

    PubMed  CAS  Google Scholar 

  • Faria-Pinto P, Meirelles MN, Lenzi HL, Mota EM, Penido ML, Coelho PM, Vasconcelos EG (2004) ATP diphosphohydrolase from Schistosoma mansoni egg: characterization and immunocytochemical localization of a new antigen. Parasitology 129(Pt 1):51–57

    Article  PubMed  CAS  Google Scholar 

  • Fujii J, Iuchi Y, Okada F (2005) Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol 3:43

    Article  PubMed  Google Scholar 

  • Ghandour AM, Ibrahim AM (1978) A study of the relationship between the energy contents of Schistosoma mansoni cercariae and their death during penetration of mammalian host skin. J Helminthol 52(4):339–342

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Zhang M, Hong Y, Zhu Z, Li D, Li X, Fu Z, Lin J (2012) Characterization of thioredoxin glutathione reductase in Schiotosoma japonicum. Parasitol Int 61(3):475–480

    Article  PubMed  CAS  Google Scholar 

  • He S, Yang L, Lv Z, Hu W, Cao J, Wei J, Sun X, Yang J, Zheng H, Wu Z (2010) Molecular and functional characterization of a mortalin-like protein from Schistosoma japonicum (SjMLP/hsp70) as a member of the HSP70 family. Parasitol Res 107(4):955–966

    Article  PubMed  Google Scholar 

  • Hu S, Law PK, Fung MC (2009) Microarray analysis of genes highly expressed in cercarial stage of Schistosoma japonicum and the characterization of the antigen Sj20H8. Acta Trop 112(1):26–32

    Article  PubMed  CAS  Google Scholar 

  • Kang ES, Iwata K, Ikami K, Ham SA, Kim HJ, Chang KC, Lee JH, Kim JH, Park SB, Yabe-Nishimura C, Seo HG (2011) Aldose reductase in keratinocytes attenuates cellular apoptosis and senescence induced by UV radiation. Free Radic Biol Med 50(6):680–688

    Article  PubMed  CAS  Google Scholar 

  • King CH (2010) Parasites and poverty: the case of schistosomiasis. Acta Trop 113(2):95–104

    Article  PubMed  Google Scholar 

  • Ko BC, Ruepp B, Bohren KM, Gabbay KH, Chung SS (1997) Identification and characterization of multiple osmotic response sequences in the human aldose reductase gene. J Biol Chem 272(26):16431–16437

    Article  PubMed  CAS  Google Scholar 

  • Kuntz AN, Davioud-Charvet E, Sayed AA, Califf LL, Dessolin J, Arner ES, Williams DL (2007) Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target. PLoS Med 4(6):e206

    Article  PubMed  Google Scholar 

  • Kunz W (2001) Schistosome male–female interaction: induction of germ-cell differentiation. Trends Parasitol 17(5):227–231

    Article  PubMed  CAS  Google Scholar 

  • Melman SD, Steinauer ML, Cunningham C, Kubatko LS, Mwangi IN, Wynn NB, Mutuku MW, Karanja DM, Colley DG, Black CL, Secor WE, Mkoji GM, Loker ES (2009) Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Negl Trop Dis 3(8):e504

    Article  PubMed  Google Scholar 

  • Pearce EJ, MacDonald AS (2002) The immunobiology of schistosomiasis. Nat Rev Immunol 2(7):499–511

    Article  PubMed  CAS  Google Scholar 

  • Quack T, Beckmann S, Grevelding CG (2006) Schistosomiasis and the molecular biology of the male–female interaction of S. mansoni. Berl Munch Tierarztl Wochenschr 119(9–10):365–372

    PubMed  CAS  Google Scholar 

  • Rath J, Gowri VS, Chauhan SC, Padmanabhan PK, Srinivasan N, Madhubala R (2009) A glutathione-specific aldose reductase of Leishmania donovani and its potential implications for methylglyoxal detoxification pathway. Gene 429(1–2):1–9

    Article  PubMed  CAS  Google Scholar 

  • Ray D, Williams DL (2011) Characterization of the phytochelatin synthase of Schistosoma mansoni. PLoS Negl Trop Dis 5(5):e1168

    Article  PubMed  CAS  Google Scholar 

  • Sayed AA, Cook SK, Williams DL (2006) Redox balance mechanisms in Schistosoma mansoni rely on peroxiredoxins and albumin and implicate peroxiredoxins as novel drug targets. J Biol Chem 281(25):17001–17010

    Article  PubMed  CAS  Google Scholar 

  • Sayed AA, Simeonov A, Thomas CJ, Inglese J, Austin CP, Williams DL (2008) Identification of oxadiazoles as new drug leads for the control of schistosomiasis. Nat Med 14(4):407–412

    Article  PubMed  CAS  Google Scholar 

  • Sharma SR, Sharma N (2008) Epalrestat, an aldose reductase inhibitor, in diabetic neuropathy: an Indian perspective. Ann Indian Acad Neurol 11(4):231–235

    Article  PubMed  CAS  Google Scholar 

  • Song L, Li J, Xie S, Qian C, Wang J, Zhang W, Yin X, Hua Z, Yu C (2012) Thioredoxin Glutathione Reductase as a novel drug target: evidence from Schistosoma japonicum. PLoS One 7(2):e31456

    Article  PubMed  CAS  Google Scholar 

  • Spycher SE, Tabataba-Vakili S, O’Donnell VB, Palomba L, Azzi A (1997) Aldose reductase induction: a novel response to oxidative stress of smooth muscle cells. FASEB J 11(2):181–188

    PubMed  CAS  Google Scholar 

  • Srivastava SK, Yadav UC, Reddy AB, Saxena A, Tammali R, Shoeb M, Ansari NH, Bhatnagar A, Petrash MJ, Srivastava S, Ramana KV (2011) Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem Biol Interact 191(1–3):330–338

    Article  PubMed  CAS  Google Scholar 

  • Tammali R, Saxena A, Srivastava SK, Ramana KV (2010) Aldose reductase regulates vascular smooth muscle cell proliferation by modulating G1/S phase transition of cell cycle. Endocrinology 151(5):2140–2450

    Article  PubMed  CAS  Google Scholar 

  • Vander Jagt DL, Hunsaker LA (2003) Methylglyoxal metabolism and diabetic complications: roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase. Chem Biol Interact 143–144:341–351

    Article  PubMed  Google Scholar 

  • Vander Jagt DL, Robinson B, Taylor KK, Hunsaker LA (1992) Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J Biol Chem 267(7):4364–4369

    Google Scholar 

  • Wang L, Utzinger J, Zhou XN (2008) Schistosomiasis control: experiences and lessons from China. Lancet 372(9652):1793–1795

    Article  PubMed  Google Scholar 

  • Yadav UC, Srivastava SK, Ramana KV (2010) Understanding the role of aldose reductase in ocular inflammation. Curr Mol Med 10(6):540–549

    PubMed  CAS  Google Scholar 

  • Zhang M, Han Y, Zhu Z, Li D, Hong Y, Wu X, Fu Z, Lin J (2012) Cloning, expression, and characterization of Schistosoma japonicum tegument protein phosphodiesterase-5. Parasitol Res 110(2):775–786

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from International collaboration on drug and diagnostics innovation of tropical diseases in PR China (grant no. 2010DFA33970), the National Natural Science Foundation of China (grant no. 30400562), and the National Science and Technology Key Project on “Major Infectious Diseases such as HIV/AIDS, Viral Hepatitis Prevention and Treatment” (grant no. 2009ZX10004-302).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoning Wang or Wei Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Wang, J., Wang, S. et al. Molecular cloning and characterization of Schistosoma japonicum aldose reductase. Parasitol Res 112, 549–558 (2013). https://doi.org/10.1007/s00436-012-3166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3166-5

Keywords

Navigation