Skip to main content

Advertisement

Log in

Investigation on the 19S ATPase proteasome subunits (Rpt1–6) conservation and their differential gene expression in Schistosoma mansoni

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The ubiquitin-proteasome system is responsible for degradation of the majority of intracellular proteins in eukaryotic cells. The 26S proteasome proteolytic complex is composed of a 20S core particle responsible for protein degradation and the 19S lid which plays a role in the recognition of polyubiquitinated substrates. The 19S regulatory particle (Rps) is composed of ATPase (Rpt) and non-ATPase (Rpn) subunits. In this study, we analyzed the expression profile of 19S Rpt subunits in the larvae and adult stage of the Schistosoma mansoni life cycle. Conventional reverse transcriptase polymerase chain reaction (RT-PCR) revealed that the majority of the 19S Rpt subunits amplified at the expected molecular masses for various investigated stages. In addition, SmRpt1, SmRpt2, and SmRpt6 transcript levels were increased in 3 h-cultured schistosomula and reasonably maintained until 5 h in culture, as revealed by qRT-PCR. Phylogenetic analysis of 19S Rpt subunits showed high structural conservation in comparison to other Rpt orthologues. The mRNA expression profile of 19S Rpt subunits did not correlate with 26S proteasome proteolytic activity as judged by a 14C-casein-degrading assay, in the early cultured schistosomula. Taken together, these results revealed a differential expression profile for 19S Rpt subunits whose transcript levels could not be directly associated to 26S proteasome activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arya S, Sharma G, Gupta P, Tiwari S (2012) In silico analysis of ubiquitin/ubiquitin-like modifiers and their conjugating enzymes in Entamoeba species. Parasitol Re 111:37–51

    Article  Google Scholar 

  • Basch PF (1981) Cultivation of Schistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. J Parasitol 67:179–185

    Article  PubMed  CAS  Google Scholar 

  • Bedford L, Paine S, Sheppard PW, Mayer RJ, Roelofs J (2010) Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 20(7):391–401

    Article  PubMed  CAS  Google Scholar 

  • Botelho-Machado C, Cabral FJ, Soares CS, Moreira EB, Morais ER, Magalhães LG, Gomes MS, Guerra-Sá R, Rosa JC, Ruller R, Ward RJ, Rodrigues V (2010) Characterization and mRNA expression analysis of PI31, an endogenous proteasome inhibitor from Schistosoma mansoni. Parasitol Res 107:1163–1171

    Article  PubMed  Google Scholar 

  • Castro-Borges W, Cartwright J, Ashton PD, Braschi S, Guerra-Sa R, Rodrigues V, Wilson RA, Curwen RS (2007) The 20S proteasome of Schistosoma mansoni: a proteomic analysis. Proteomic 7:1065–1075

    Article  CAS  Google Scholar 

  • Dillon GP, Feltwell T, Skelton JP, Ashton PD, Coulson PS, Quail MA, Nikolaidou-Katsaridou N, Wilson RA, Ivens AC (2006) Microarray analysis identifies genes preferentially expressed in the lung schistosomulum of Schistosoma mansoni. Int J Parasitol 36:1–8

    Article  PubMed  CAS  Google Scholar 

  • Fishelson Z, Amiri P, Friend DS, Marikovsky M, Petitt M, Newport G, Mckerow JH (1992) Schistosoma mansoni: cell-specific expression and secretion of a serine protease during development of cercariae. Exp Parasitol 75:87–98

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    PubMed  CAS  Google Scholar 

  • González J, Ramalho-Pinto FJ, Frevert U, Ghiso J, Tomlinson S, Scharfstein J, Corey EJ, Nussenzweig V (1996) Proteasome activity is required for the stage-specific transformation of a protozoan parasite. J Exp Med 84(5):1909–1918

    Article  Google Scholar 

  • Guerra-Sá R, Castro-Borges W, Evangelista EAB, Kettelhut IC, Rodrigues V (2005) Schistosoma mansoni: functional proteasomes are required for development in the vertebrate host. Exp Parasitol 109:228–236

    Article  PubMed  Google Scholar 

  • Guerrero C, Milenkovic T, Przulj N, Kaiser P, Huang L (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci 105(36):13333–13338

    Article  PubMed  CAS  Google Scholar 

  • Harrop R, Wilson RA (1993) Protein synthesis and release by cultures schistosomula of Schistosoma mansoni. Parasitology 107:265–274

    Article  PubMed  CAS  Google Scholar 

  • Hua S, To WY, Nguyen TT, Wong ML, Wang CC (1996) Purification and characterization of proteasomes from Trypanosoma brucei. Mol Biochem Parasitol 78:33–46

    Article  PubMed  CAS  Google Scholar 

  • Jolly ER, Chin CS, Miller S, Bahgat MM, Lim KC, DeRisi J, McKerrow JH (2007) Gene expression patterns during adaptation of a helminth parasite to different environmental niches. Genome Biol 8:R65

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mathieson W, Castro-Borges W, Wilson RA (2011) The proteasome-ubiquitin pathway in the Schistosoma mansoni egg has development- and morphology-specific characteristics. Mol Biochem Parasitol 175:118–125

    Article  PubMed  CAS  Google Scholar 

  • Mckerow JH, Salter J (2002) Invasion of skin by Schistosoma cercariae. Trends Parasitol 18:193–195

    Article  Google Scholar 

  • Nabhan JF, El-Shehabi F, Patocka N, Ribeiro P (2007) The 26S proteasome in Schistosoma mansoni: bioinformatics analysis, developmental expression, and RNA interference (RNAi) studies. Exp Parasitol 117:337–347

    Article  PubMed  CAS  Google Scholar 

  • Neuwald AF, Aranvind L, Spouge JL, Koonin EV (1999) AAA: a class of chaperone-like ATPases associated whit assembly, operation and disassembly of protein complexes. Genome Res 9:27–43

    PubMed  CAS  Google Scholar 

  • Ogura T, Tanaka K (2003) Dissecting various ATP-dependent steps involved in proteasomal degradation. Mol Cell 11:3–5

    Article  PubMed  CAS  Google Scholar 

  • Ogura T, Wilkinson CR (2001) AAA superfamily ATPases: common structure—diverse functions. Genes 6:575–595

    Article  CAS  Google Scholar 

  • Parker-Manuel SJ, Ivens AC, Dillon GP, Wilson RA (2011) Gene expression patterns in larval Schistosoma mansoni associated with infection of the mammalian host. PLoS Negl Trop Dis 5(8):e1274

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Latterich M (1998) The AAA team: related ATPases with diverse functions. Trends Cell Biol 8:65–71

    Article  PubMed  CAS  Google Scholar 

  • Paugam A, Bulteau AL, Dupouy-Camet J, Creuzet C, Friguet B (2003) Characterization and role of protozoa parasite proteasomes. Trends Parasitol 19:55–59

    Article  PubMed  CAS  Google Scholar 

  • Paula FM, Castro-Borges W, Pereira Júnior OS, Gomes MS, Ueta MT, Rodrigues V (2009) The ubiquitin–proteasome system in Strongyloididae. Biochemical evidence for developmentally regulated proteolysis in Strongyloides venezuelensis. Parasitol Res 105(2):567–576

    Article  PubMed  Google Scholar 

  • Protasio AV, Tsai IJ, Babbage A, Nichol S, Hunt M et al (2012) A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis 6(1):e1455

    Article  PubMed  CAS  Google Scholar 

  • Robertson CD (1999) The Leishmania mexicana proteasome. Mol Biochem Parasitol 103:49–60

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Scholze H, Frey S, Cejka Z, Bakker-Grunwald T (1996) Evidence for the existence of both proteasomes and a novel high molecular weight peptidase in Entamoeba histolytica. J Biol Chem 271:6212–6216

    Article  PubMed  CAS  Google Scholar 

  • Seol JH, Park SC, Ha DB, Chung CH, Tanaka K, Ichihara A (1989) Na+, K + -specific inhibition of protein and peptide hydrolyses by proteasomes from human hepatoma tissues. FEBS Lett 247:197–200

    Article  PubMed  CAS  Google Scholar 

  • Shaw MK, He CY, Roos DS, Tilney LG (2000) Proteasome inhibitors block intracellular growth and replication of Toxoplasma gondii. Parasitology 121:35–47

    Article  PubMed  CAS  Google Scholar 

  • Smithers SR, Terry RJ (1965) The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of the adult worms. Parasitology 55:695–700

    PubMed  CAS  Google Scholar 

  • Stirewalt MA (1974) Schistosoma mansoni: cercaria to schistosomule. Adv Parasitol 12:115–182

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1598

    Article  PubMed  CAS  Google Scholar 

  • Verma R, Chen S, Feldman R, Schieltz D, Yates J, Dohmen J, Deshaies RJ (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 11(10):3425–3439

    PubMed  CAS  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Conselho Nacional de Pesquisa e Desenvolvimento, Fundação de Amparo a Pesquisa do Estado de São Paulo, and Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior. The authors are grateful to Elenice Macedo and Olinda Mara Brigato for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanderlei Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira-Júnior, O.S., Pereira, R.V., Silva, C.S. et al. Investigation on the 19S ATPase proteasome subunits (Rpt1–6) conservation and their differential gene expression in Schistosoma mansoni . Parasitol Res 112, 235–242 (2013). https://doi.org/10.1007/s00436-012-3130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3130-4

Keywords

Navigation