Skip to main content
Log in

Phylogeny of fish-infecting Calyptospora species (Apicomplexa: Eimeriorina)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

There are numerous species of apicomplexans that infect poikilothermic vertebrates, such as fishes, and possess unique morphological features that provide insight into the evolution of this important phylum of parasites. Here, the relationship of the fish-infecting Calyptospora species to other coccidians was investigated based on DNA sequence analysis. Genetic data from the small subunit ribosomal DNA region of the genome were obtained for three of the five nominal species in the genus Calyptospora. Phylogenetic analyses supported a monophyletic lineage sister to a group composed of mostly Eimeria species. The monophyly of Calyptospora species supports the validity of the family Calyptosporidae, but the sister relationship to Eimeria species might also suggest the Eimeriidae be expanded to encompass Calyptospora. The validity of the family Calyptosporidae has been questioned because it is delineated from the Eimeriidae largely based on life cycle characteristics and sporocyst morphology. In general, Eimeria species have a homoxenous life cycle, whereas the type species of Calyptospora is heteroxenous. In the absence of experimental transmission studies, it may be difficult to demonstrate whether all Calyptospora species are heteroxenous. Other distinct morphological characteristics of Calyptospora such as an incomplete sporocyst suture, an apical opening for sporozoite release, a thin veil surrounding sporocysts supported by sporopodia, and a lack of Stieda and sub-Stieda bodies suggest there may be adequate features to delineate these taxa. Even without life cycle data for all species, the morphology and genetic data provide a means to reliably classify Calyptospora species. Placement in either the Calyptosporidae or Eimeriidae is discussed, along with issues relating to the phylogeny of the genus Goussia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Azevedo C, Matos P, Matos E (1993) Morphological data of Calyptospora spinosa n. sp. (Apicomplexa, Calyptosporidae) parasite of Crenicichla lepidota Heckel, 1840 (Teleostei) from Amazon River. Eur J Protistol 29:171–175

    Article  Google Scholar 

  • Barta JR (2001) Molecular approaches for inferring evolutionary relationships among protistan parasites. Vet Parasitol 101:175–186

    Article  PubMed  CAS  Google Scholar 

  • Barta JR, Thompson RCA (2006) What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends Parasitol 22:463–468

    Article  PubMed  Google Scholar 

  • Beiko RG, Keith JM, Harlow TJ, Ragan MA (2006) Searching for convergence in phylogenetic Markov Chain Monte Carlo. Syst Biol 55:553–565

    Article  PubMed  Google Scholar 

  • Békési L, Molnár K (1991) Calyptospora tucunarensis n. sp. (Apicomplexa: Sporozoea) from the liver of tucunare Cichla ocellaris in Brazil. Syst Parasitol 18:127–132

    Article  Google Scholar 

  • Bonar CJ, Poynton SL, Schulman FY, Rietcheck RL, Garner MM (2006) Hepatic Calyptospora sp. (Apicomplexa) infection in a wild-born, aquarium-held clutch of juvenile arapaima Arapaima gigas (Osteoglossidae). Dis Aquat Organ 70:81–92

    Article  PubMed  Google Scholar 

  • Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Muller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3:2

    Article  PubMed  Google Scholar 

  • Casal G, Padovan I, Matos E, Padovan P, Matos P, Guimarães A, Azevedo C (2007) Morphological and ultrastructural redescription of Calyptospora serrasalmi Cheung, Nigrelli & Ruggieri, 1986 (Apicomplexa: Calyptosporidae), a parasite found in two new host species of the genus Serrasalmus. Braz J Morphol Sci 24:11–16

    Google Scholar 

  • Cheung PJ, Nigrelli RF, Ruggieri GD (1986) Calyptospora serrasalmi sp. nov. (Coccidia: Calyptosporidae) from liver of the black piranha, Serrasalmus niger Schomburgk. J Aquat Sci 4:54–57

    Google Scholar 

  • Dahlgren SS, Gjerde B (2007) Genetic characterisation of six Sarcocystis species from reindeer (Rangifer tarandus tarandus) in Norway based on the small subunit rRNA gene. Vet Parasitol 146:204–213

    Article  PubMed  CAS  Google Scholar 

  • Dahlgren SS, Gjerde B (2009) Sarcocystis in Norwegian roe deer (Capreolus capreolus): molecular and morphological identification of Sarcocystis oviformis n. sp. and Sarcocystis gracilis and their phylogenetic relationship with other Sarcocystis species. Parasitol Res 104:993–1003

    Article  PubMed  Google Scholar 

  • Dahlgren SS, Gjerde B (2010) Molecular characterization of five Sarcocystis species in red deer (Cervus elaphus), including Sarcocystis hjorti n. sp., reveals that these species are not intermediate host specific. Parasitology 137:815–840

    Article  PubMed  CAS  Google Scholar 

  • Dahlgren SS, Gouveia-Oliveira R, Gjerde B (2008) Phylogenetic relationships between Sarcocystis species from reindeer and other Sarcocystidae deduced from ssu rRNA gene sequences. Vet Parasitol 151:27–35

    Article  PubMed  CAS  Google Scholar 

  • de Albuquerque MC, de Carvalho Brasil‐Sato M (2010) First report of Calyptospora sp. (Apicomplexa, Calyptosporidae) in forage characid fish from the Três Marias Reservoir, São Francisco Basin, Brazil. Eur J Protistol. 46:150‐152

  • Fournie JW (1985) Biology of Calyptospora funduli (Apicomplexa) from atheriniform fishes. Doctoral dissertation, University of Mississippi, 100 pp

  • Fournie JW, Overstreet RM (1993) Host specificity of Calyptospora funduli (Apicomplexa: Calyptosporidae) in atheriniform fishes. J Parasitol 79:720–727

    Article  PubMed  CAS  Google Scholar 

  • Fournie JW, Overtstreet RM (1983) True intermediate hosts for Eimeria funduli (Apicomplexa) from estuarine fishes. J Protozool 30:672–675

    Google Scholar 

  • Fournie JW, Hawkins WE, Overstreet RM (1985) Calyptospora empristica n. sp. (Eimeriorina: Calyptosporidae) from the liver of the starhead topminnow, Fundulus notti. J Protozool 32:542–547

    Google Scholar 

  • Fournie JW, Vogelbein WK, Overstreet RM, Hawkins WE (2000) Life cycle of Calyptospora funduli (Apicomplexa: Calyptosporidae). J Parasitol 86:501–505

    PubMed  CAS  Google Scholar 

  • Gillespie JJ (2004) Characterizing regions of ambiguous alignment caused by the expansion and contraction of hairpin-stem loops in ribosomal RNA molecules. Mol Phylogenet Evol 33:936–943

    Article  PubMed  CAS  Google Scholar 

  • Gutell RR, Larsen N, Woese CR (1994) Lessons from an evolving rRNA: 16 S and 23 S rRNA structures from a comparative perspective. Microbiol Rev 58:10–26

    PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hawkins WE, Fournie JW, Overstreet RM (1983) Organization of sporulated oocysts of Eimeria funduli in the gulf killifish, Fundulus grandis. J Parasitol 69:496–503

    Article  Google Scholar 

  • Holmdahl OJM, Morrison DA, Ellis JT, Huong LTT (1999) Evolution of ruminant Sarcocystis (Sporozoa) parasites based on small subunit rDNA sequences. Mol Phylogenet Evol 11:27–37

    Article  PubMed  CAS  Google Scholar 

  • Jirků M, Modrý D, Slapeta JR, Koudela B, Lukes J (2002) The phylogeny of Goussia and Choleoeimeria (Apicomplexa; Eimeriorina) and the evolution of excystation structures in coccidia. Protist 153:379–390

    Article  PubMed  Google Scholar 

  • Jirků M, Bolek MG, Whipps CM, Janovy J, Kent ML, Modry D (2006) A new species of Myxidium (Myxosporea: Myxidiidae), from the western chorus frog, Pseudacris triseriata triseriata, and Blanchard’s cricket frog, Acris crepitans blanchardi (Hylidae) from eastern Nebraska USA: morphology, phylogeny and critical comments on amphibian Myxidium taxonomy. J Parasitol 92:611–619

    Article  PubMed  Google Scholar 

  • Jirků M, Jirků M, Oborník M, Lukes J, Modry D (2009) Goussia Labbé, 1896 (Apicomplexa, Eimeriorina) in Amphibia: diversity, biology, molecular phylogeny and comments on the status of the genus. Protist 160:123–136

    Article  PubMed  Google Scholar 

  • Levine ND (1988) The protozoan phylum Apicomplexa, vol I. CRC Press, Boca Raton

    Google Scholar 

  • Lom J, Dyková I (1992) Protozoan parasites of fishes. Developments in aquaculture and fisheries science, 26. Elsevier, Amsterdam, 315 pp

    Google Scholar 

  • Maddison DR, Maddison WP (2000) MacClade: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Morrison DA (2005) Networks in phylogenetic analysis: new tools for population biology. Int J Parasitol 35:567–582

    Article  PubMed  Google Scholar 

  • Morrison DA (2006) Phylogenetic analyses of parasites in the new millennium. Adv Parasitol 63:1–124

    Article  PubMed  Google Scholar 

  • Morrison DA (2009) Evolution of the Apicomplexa: where are we now? Trends Parasitol 25:375–382

    Article  PubMed  Google Scholar 

  • Morrison DA, Bornstein S, Thebo P, Wernery U, Kinne J, Mattsson JG (2004) The current status of the small subunit rRNA phylogeny of the coccidia (Sporozoa). Int J Parasitol 34:501–514

    Article  PubMed  CAS  Google Scholar 

  • Overstreet RM, Hawkins WE, Fournie JW (1984) The coccidian genus Calyptospora n.g. and family Calyptosporidae n. fam. (Apicomplexa), with members infecting primarily fishes. J Protozool 31:332–339

    Google Scholar 

  • Perkins FO, Barta JR, Clopton RE, Peirce MA, Upton SJ (2000) Phylum Apicomplexa. In: Lee JJ, Leedale GF, Bradbury P (eds) An illustrated guide to the protozoa, 2nd edn. Society of Protozoologists, Lawrence, pp 190–369

    Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res 35:7188–7196

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A (2009) FigTree: tree figure drawing tool. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, Edinburgh

    Google Scholar 

  • Rambaut A, Charleston M (2001) Phylogenetic tree editor. Department of Zoology, University of Oxford, Oxford

    Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer: MCMC trace analysis tool. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Slapeta J (2008) Taxonomy of the genus Cryptosporidium Tyzzer 1907 (Apicomplexa): revision and checklist—iCRYPTO. Available at http://www.vetsci.usyd.edu.au/staff/JanSlapeta. Accessed on 3 November 2008

  • Slapeta JR, Kyselova I, Richardson AO, Modry D, Lukês J (2002) Phylogeny and sequence variability of the Sarcocystis singaporensis Zaman and Colley, 1975, 1976 ssrDNA. Parasitol Res 88:810–815

    PubMed  Google Scholar 

  • Slapeta JR, Modry D, Votypka J, Jirků M, Lukes J, Koudela B (2003) Evolutionary relationships among cyst-forming coccidia Sarcocystis spp. (Alveolata: Apicomplexa: Coccidea) in endemic African tree vipers and perspective for evolution of heteroxenous life cycle. Mol Phylogenet Evol 27:464–475

    Article  PubMed  CAS  Google Scholar 

  • Solangi MA, Overstreet RM (1980) Biology and pathogenesis of the coccidium Eimeria funduli infecting killifishes. J Parasitol 66:513–526

    Article  PubMed  CAS  Google Scholar 

  • Steinhagen D, Körting W (1990) The role of tubificid oligochaetes in the transmission of Goussia carpelli. J Parasitol 76:104–107

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Whipps CM, Adlard RD, Bryant MS, Lester RJG, Findlay V, Kent ML (2003) First report of three Kudoa species from eastern Australia: Kudoa thyrsites from Mahi mahi (Coryphaena hippurus), Kudoa amamiensis and Kudoa minithyrsites n. sp. from Sweeper (Pempheris ypsilychnus). J Eukaryot Microbiol 50:215–219

    Article  PubMed  Google Scholar 

  • Work TM, Rameyer RA, Takata G, Kent ML (2003) Protozoal and epitheliocystis-like infections in the introduced bluestripe snapper Lutjanus kasmira in Hawaii. Dis Aquat Organ 57:59–66

    Article  PubMed  Google Scholar 

  • Wuyts J, De Rijk P, Van de Peer Y, Pison G, Rousseeuw P, De Wachter R (2000) Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA. Nucl Acids Res 28:4698–4708

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Whipps.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whipps, C.M., Fournie, J.W., Morrison, D.A. et al. Phylogeny of fish-infecting Calyptospora species (Apicomplexa: Eimeriorina). Parasitol Res 111, 1331–1342 (2012). https://doi.org/10.1007/s00436-012-2969-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-2969-8

Keywords

Navigation