Skip to main content
Log in

How do host sex and reproductive state affect host preference and feeding duration of ticks?

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Parasitism is one of the most notable forms of symbiosis in the biological world, with nearly all organisms hosting parasites. In many vertebrates, males have higher ectoparasite burdens than females, especially when testosterone concentrations are elevated. Furthermore, reproductive females may have higher ectoparasite burdens than non-reproductive females. It is possible that testosterone-stimulated behaviors in males and offspring investment by females incur energetic costs that inhibit immune function. If questing ticks can sense host sex or reproductive condition prior to attachment, they could potentially choose hosts with the poorest immune function, thereby leading to improved feeding success and decreased feeding duration. In this study, we examined the host–parasite relationship between western fence lizards (Sceloporus occidentalis) and the western black-legged tick (Ixodes pacificus) to test the following hypotheses: (1) ticks prefer male lizards to female lizards. (2) Ticks prefer male lizards with higher testosterone. (3) Ticks prefer reproductive female lizards to non-reproductive female lizards. (4) Ticks feed to repletion more rapidly (decreased feeding duration) on reproductive females and males with higher testosterone. In all three experiments, ticks failed to show a preference for one group over another as demonstrated by similar attachment rates between groups. This suggests that observed differences in ectoparasite loads in free-ranging lizards is due to some other factor than host choice. However, tick feeding duration on female lizards was shorter when hosts were reproductive, suggesting that host reproductive condition alters tick feeding, possibly due to a decreased immune response. Interestingly, ticks fed more slowly on male lizards with elevated testosterone, suggesting that testosterone may actually improve immune function against ectoparasites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anthony CD, Mendelson JR III, Simons RR (1994) Differential parasitism by sex on Plethodontid salamanders and histological evidence for structural damage to the nasolabial groove. Am Midl Nat 132:302–307

    Article  Google Scholar 

  • Aubret F, Bonnet X, Harris M, Maumelat S (2005) Sex differences in body size and ectoparasite load in the ball python, Python regius. J Herpetol 39:312–315. doi:10.1670/111-02N

    Article  Google Scholar 

  • Bakker TCM, Mazzi D, Zala S (1997) Parasite-induced changes in behavior and color make Gammarus pulex more prone to fish predation. Ecology 78:1098–1104. doi:10.1890/0012-9658(1997)078[1098:PICIBA]2.0.CO;2

    Google Scholar 

  • Baudoin M (1975) Host castration as a parasitic strategy. Evolution 29:335–352

    Article  Google Scholar 

  • Belliure J, Smith L, Sorci G (2004) Effect of testosterone on T cell-mediated immunity in two species of Mediterranean lacertid lizards. J Exp Zool 301A:411–418. doi:10.1002/jez.a.20068

    Article  CAS  Google Scholar 

  • Bonnet X, Naulleau G, Mauget R (1994) The influence of body condition on 17-ß estradiol levels in relation to vitellogenesis in female Vipera aspis. Gen Comp Endocr 93:424–437

    Article  PubMed  CAS  Google Scholar 

  • Boyer N, Reale D, Marmet J, Pisanu B, Chapuis J (2010) Personality, space use and tick load in an introduced population of Siberian chipmunks Tamias sibiricus. J Anim Ecol 79:538–547

    Article  PubMed  Google Scholar 

  • Braña F, González F, Barahona A (1992) Relationship between ovarian and fat body weights during vitellogenesis for three species of Lacertid lizards. J Herpetol 26:515–518

    Article  Google Scholar 

  • Brasfield SM, Talent LG, Janz DM (2008) Reproductive and thyroid hormone profiles in captive western fence lizards (Sceloporus occidentalis) after a period of brumation. Zoo Biol 27:36–48

    Article  PubMed  CAS  Google Scholar 

  • Brossard M, Wikel SK (2004) Tick immunobiology. Parasitology 129:S161–S176. doi:10.1017/S0031182004004834

    Article  PubMed  CAS  Google Scholar 

  • Buchanan KL, Evans MR, Goldsmith AR, Bryant DM, Rowe LV (2001) Testosterone influences basal metabolic rate in male house sparrows: a new cost of dominance signalling? Proc R Soc Lond B 268:1337–1344

    Article  CAS  Google Scholar 

  • Carrick R, Bullough WS (1940) The feeding of the tick, Ixodes ricinus L., in relation to the reproductive condition of the host. Parasitology 32:313–317

    Article  Google Scholar 

  • Champagne DE, Valenzuela JG (1996) Pharmacology of haematophagous arthropod saliva. In: Wikel SK (ed) The immunology of host-ectoparasitic arthropod relationships. CAB International, Wallingford, pp 85–106

    Google Scholar 

  • Christe P, Arlettaz R, Vogel P (2000) Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecol Lett 3:207–212

    Article  Google Scholar 

  • Christe P, Giorgi MS, Vogel P, Arlettaz R (2003) Differential species-specific ectoparasitic mite intensities in two intimately coexisting sibling bat species: resource-mediated host attractiveness or parasite specialization? J Anim Ecol 72:866–872. doi:10.1046/j.1365-2656.2003.00759.x

    Article  Google Scholar 

  • Cichon M, Dubiec A, Chadzinska M (2001) The effect of elevated reproductive effort on humoral immune function in collared flycatcher females. Acta Oecol 22:71–76

    Article  Google Scholar 

  • Cox RM, John-Alder HB (2007) Increased mite parasitism as a cost of testosterone in male striped plateau lizards Sceloporus virgatus. Funct Ecol 21:327–334

    Article  Google Scholar 

  • Cox RM, Skelly SL, John-Alder HB (2005) Testosterone inhibits growth in juvenile male eastern fence lizards (Sceloporus undulatus): implications for energy allocation and sexual size dimorphism. Physiol Biochem Zool 78:531–545

    Article  PubMed  CAS  Google Scholar 

  • Daniel M, Cerny V, Dusbabek F, Honzakova E, Olejnicek J (1976) Influence of microclimate on the life cycle of the common tick Ixodes ricinus (L.) in thermophilic oak forest. Folia Parasitol 23:327–342

    PubMed  CAS  Google Scholar 

  • de Lopé F, Møller AP, de la Cruz C (1998) Parasitism, immune response, and reproductive success in the house martin Delichon urbica. Oecologia 114:188–193. doi:10.1007/s004420050435

    Article  Google Scholar 

  • DeNardo DF, Sinervo B (1994) Effects of steroid hormone interaction on activity and home-range size of male lizards. Horm Behav 28:273–287. doi:10.1006/hbeh.1994.1023

    Article  PubMed  CAS  Google Scholar 

  • Dukes JC, Rodriguez JG (1976) A bioassay for host-seeking responses of tick nymphs (Ixodidae). J Kansas Entomol Soc 49:562–566

    Google Scholar 

  • Dunlap D, Schall JJ (1995) Hormonal alterations and reproductive inhibition in male fence lizards (Sceloporus occidentalis) infected with the malarial parasite Plasmodium mexicanum. Physiol Zool 68:608–621

    CAS  Google Scholar 

  • Eisen L, Eisen RJ (1999) Abundance of ticks (Acari: Ixodidae) infesting the western fence lizard, Sceloporus occidentalis, in relation to environmental factors. Exp Appl Acarol 23:731–740. doi:10.1023/A:1006212323760

    Article  PubMed  Google Scholar 

  • Eisen RJ, Eisen L, Lane RS (2001) Prevalence and abundance of Ixodes pacificus immatures (Acari: Ixodidae) infesting western fence lizards (Sceloporus occidentalis) in northern California: temporal trends and environmental correlates. J Parasitol 87:1301–1307. doi:10.1645/0022-3395(2001)087[1301:PAAOIP]2.0.CO;2

    PubMed  CAS  Google Scholar 

  • Eisen L, Eisen RJ, Lane RS (2004) The roles of birds, lizards, and rodents as hosts for the western black-legged tick Ixodes pacificus. J Vector Ecol 29:295–308

    PubMed  Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Amer Nat 139:603–622

    Article  Google Scholar 

  • Folstad I, Nilssen AC, Halvorsen O, Anderson J (1989) Why do male reindeer (Rangifer t. tarandus) have higher abundance of second and third instar larvae of Hypoderma tarandi than females? Oikos 55:87–92

    Article  Google Scholar 

  • French SS, Moore MC (2008) Immune function varies with reproductive stage and context in female and male tree lizards, Urosaurus ornatus. Gen Comp Endocr 155:148–156. doi:10.1016/j.ygcen.207.04.007

    Article  PubMed  CAS  Google Scholar 

  • French SS, DeNardo DF, Moore MC (2007a) Trade-offs between the reproductive and immune systems: facultative responses to resources or obligate responses to reproduction? Am Nat 170:79–89

    Article  PubMed  Google Scholar 

  • French SS, Johnston GIH, Moore MC (2007b) Immune activity suppresses reproduction in food-limited female tree lizards (Urosaurus ornatus). Funct Ecol 21:1115–1122. doi:10.1111/j.1365-2435.2007.01311.x

    Article  Google Scholar 

  • French SS, McLemore R, Vernon B, Johnston GIH, Moore MC (2007c) Corticosterone modulation of reproductive and immune systems trade-offs in female tree lizards: long-term corticosterone manipulations via injectable gelling material. J Exp Biol 210:2859–2865. doi:10.1242/jeb.005348

    Article  PubMed  CAS  Google Scholar 

  • Godfrey SS, Nelson NJ, Bull MC (2011) Microhabitat choice and host-seeking behaviour of the tuatara tick, Amblyomma sphenodonti (Acari: Ixodidae). N Z J Ecol 35:52–60

    Google Scholar 

  • Goldberg SR (1974) Reproduction in mountain and lowland populations of the lizard Sceloporus occidentalis. Copeia 1974:176–182

    Article  Google Scholar 

  • Gooderham K, Schulte-Hostedde A (2011) Macroparasitism influences reproductive success in red squirrels (Tamiasciurus hudsonicus). Behav Ecol 22:1195–1200. doi:10.1093/beheco/arr112

    Article  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387. doi:10.1126/science.7123238

    Article  PubMed  CAS  Google Scholar 

  • Hovius JWR, Levi M, Fikrig E (2008) Salivating for knowledge: potential pharmacological agents in tick saliva. PLOS Med 5:0202–0208. doi:10.1371/journal.pmed.0050043

    Article  CAS  Google Scholar 

  • Hughes VL, Randolph SE (2001) Testosterone increases the transmission potential of tick-borne parasites. Parasitology 123:365–371. doi:10.1017’S0031182001008599

    Article  PubMed  CAS  Google Scholar 

  • James AM, Oliver JH Jr (1990) Feeding and host preference of immature Ixodes dammini, I. scapularis, and I. pacificus (Acari: Ixodidae). J Med Entomol 27:324–330

    PubMed  CAS  Google Scholar 

  • John-Alder HB, Cox RM, Haenel GJ, Smith LC (2009) Hormones, performance, and fitness: natural history and endocrine experiments on a lizard (Sceloporus undulatus). Integr Comp Biol 49:393–407

    Article  PubMed  CAS  Google Scholar 

  • Klein SL (2000) The effects of hormones on sex differences in infection: from genes to behavior. Neurosci Biobehav R 24:627–638. doi:10.1016/S0149-7634(00)00027-0

    Article  CAS  Google Scholar 

  • Klein SL (2003) Parasite manipulation of the proximate mechanisms that mediate social behavior in vertebrates. Physiol Behav 79:441–449. doi:10.1016/S0031-9384(03)00163-X

    Article  PubMed  CAS  Google Scholar 

  • Klukowski M, Nelson CE (1998) The challenge hypothesis and seasonal changes in aggression and steroids in male northern fence lizards (Sceloporus undulatus hyacinthinus). Horm Behav 33:197–204. doi:10.1006/hbeh.1998.1449

    Article  PubMed  CAS  Google Scholar 

  • Klukowski M, Nelson CE (2001) Ectoparasite intensities in free-ranging northern fence lizards, Sceloporus undulatus hyacinthinus: effects of testosterone and sex. Behav Ecol Sociobiol 49:289–295

    Article  Google Scholar 

  • Lind CM, Husak JF, Eikenaar C, Moore IT, Taylor EN (2010) The relationship between plasma steroid hormone concentrations and the reproductive cycle in the northern pacific rattlesnake, Crotalus oreganus. Gen Comp Endocrinol 166:590–599. doi:10.1016/j.ygcen.2010.01.026

    Article  PubMed  CAS  Google Scholar 

  • Lively CM (2010) Antagonistic coevolution and sex. Evo Edu Outreach 3:19–25. doi:10.1007/s12052-009-0196-2

    Article  Google Scholar 

  • Lumbad AS, Vredevoe LK, Taylor EN (2011) Season and host affect ectoparasite load in western fence lizards (Sceloporus occidentalis) on the California central coast. Southwest Nat 56:369–377

    Article  Google Scholar 

  • Marler CA, Moore MC (1988) Evolutionary costs of aggression revealed by testosterone manipulations in free-living male lizards. Behav Ecol Sociobiol 23:21–26. doi:10.1007/BF00303053

    Article  Google Scholar 

  • Marler CA, Moore MC (1989) Time and energy costs of aggression in testosterone- implanted free-living male mountain spiny lizards (Sceloporus jarrovi). Physiol Zool 62:1334–1350

    CAS  Google Scholar 

  • Møller AP, Christie P, Lux E (1999) Parasitism, host immune function, and sexual selection. Q Rev Biol 74:3–20

    Article  PubMed  Google Scholar 

  • Mondal S, Rai U (1999) Sexual dimorphism in phagocytic activity of wall lizard’s splenic macrophages and its control by sex steroids. Gen Comp Endocr 116:291–298. doi:10.1006/gcen.1999.7370

    Article  PubMed  CAS  Google Scholar 

  • Mondal S, Rai U (2002) In vitro effect of sex steroids on cytotoxic activity of splenic macrophages in wall lizard (Hemidactylus flaviviridis). Gen Comp Endocr 125:264–271. doi:10.1006/gcen.2001.7744

    Article  PubMed  CAS  Google Scholar 

  • Moore MC (1986) Elevated testosterone levels during non-breeding season territoriality in a fall-breeding lizard, Sceloporus jarrovi. J Comp Physiol A 158:159–163

    Article  PubMed  CAS  Google Scholar 

  • Moore SL, Wilson K (2002) Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297:2015–2018. doi:10.1126/science.1074196

    Article  PubMed  CAS  Google Scholar 

  • Morand S, De Bellocq JG, Stanko M, Miklisova D (2004) Is sex-biased ectoparasitism related to sexual size dimorphism in small mammals of Central Europe? Parasitology 129:505–510. doi:10.1017/S0031182004005840

    Article  PubMed  CAS  Google Scholar 

  • Nordling D, Andersson M, Zohari S, Gustafsson L (1998) Reproductive effort reduces specific immune response and parasite resistance. Proc R Soc Lond B 265:1291–1298. doi:10.1098/rspb.1998.0432

    Article  Google Scholar 

  • Norris K, Anwar M, Read AF (1994) Reproductive effort influences the prevalence of haematozoan parasites in great tits. J Anim Ecol 63:601–610

    Article  Google Scholar 

  • Olsson M, Wapstra E, Madsen T, Silverin B (2000) Testosterone, ticks, and travels: a test of the immunocompetence-handicap hypothesis in free ranging male sand lizards. Proc Roy Soc B 267:2339–2343. doi:10.1098/rspb.2000.1289

    Article  CAS  Google Scholar 

  • Oppliger A, Giorgi MS, Conelli GA, Nembrini M, John-Alder HB (2004) Effect of testosterone on immunocompetence, parasite intensity, and metabolism in the common wall lizard (Podarcis muralis). Can J Zool 82:1713–1719

    Article  CAS  Google Scholar 

  • Poulin R (1996) Sexual inequalities in helminth infections: a cost of being a male? Am Midl Nat 147:287–295

    Google Scholar 

  • Randolph SE (1998) Ticks are not insects: consequences of contrasting vector biology for transmission potential. Parasitol Today 14:186–192. doi:10.1016/S0169-4758(98)01224-1

    Article  PubMed  CAS  Google Scholar 

  • Randolph SE (2004) Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology 129:S37–S65. doi:10.1017/S0031182004004925

    Article  PubMed  Google Scholar 

  • Rechav Y, Kuhn HG, Knight MM (1980) The effects of the tick Amblyomma hebraeum (Acari: Ixodidae) on blood composition and weight of rabbits. J Med Entomol 17:555–560

    PubMed  CAS  Google Scholar 

  • Ribeiro JMC (1989) Role of saliva in tick/host interactions. Exp Appl Acarol 7:15–20. doi:10.1007/BF01200449

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JMC (1995) How ticks make a living. Parasitol Today 11:91–93

    Article  PubMed  CAS  Google Scholar 

  • Ricklefs RE (1977) On the evolution of reproductive strategies in birds: reproductive effort. Am Nat 111:453–478

    Article  Google Scholar 

  • Roberts ML, Buchanan KL, Evans MR (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim Behav 68:227–239. doi:10.1016/j.anbehav.2004.05.001

    Article  Google Scholar 

  • Ruiz M, French SS, Demas GE, Martins EP (2010) Food supplementation and testosterone interact to influence reproductive behavior and immune function in Sceloporus graciosus. Horm Behav 57:134–139. doi:10.1016/j.yhbeh.2009.09.019

    Article  PubMed  CAS  Google Scholar 

  • Ruiz M, Wang D, Reinke BA, Demas GE, Martins EP (2011) Trade-offs between reproductive coloration and innate immunity in a natural population of female sagebrush lizards, Sceloporus graciosus. Herpetol J 21:131–134

    Google Scholar 

  • Saad AH, Khalek NA, El Ridi R (1990) Blood testosterone level: a season-dependent factor regulating immune reactivity in lizards. Immunobiology 180:184–194

    Article  PubMed  CAS  Google Scholar 

  • Saino N, Møller AP AP, Bolzern AM (1995) Testosterone effects on the immune system and parasite infestations in the barn swallow (Hirundo rustica): an experimental test of the immunocompetence hypothesis. Behav Ecol 6:397–404. doi:10.1093/beheco/6.4.397

    Article  Google Scholar 

  • Salkeld DJ, Schwarzkopf L (2005) Epizootiology of blood parasites in an Australian lizard: a mark-recapture study of a natural population. Int J Parasitol 35:11–18. doi:10.1016/j.ijpara.2004.09.005

    Article  PubMed  Google Scholar 

  • Salvador A, Veiga JP, Martin J, Lopez P, Abelenda M, Puerta M (1996) The cost of producing a sexual signal: testosterone increases the susceptibility of male lizards to ectoparasite infestation. Behav Ecol 7:145–150. doi:10.1093/beheco/7.2.145

    Article  Google Scholar 

  • Schall JJ (1990) Virulence of lizard malaria: the evolutionary ecology of an ancient parasite–host association. Parasitology 100:S35–S52. doi:10.1017/S0031182000073005

    Article  PubMed  Google Scholar 

  • Schall JJ, Dearing MD (1987) Malarial parasitism and male competition for mates in the western fence lizard, Sceloporus occidentalis. Oecologia 73:389–392. doi:10.1007/BF00385255

    Article  Google Scholar 

  • Schall JJ, Marghoob AB (1995) Prevalence of a malarial parasite over time and space: Plasmodium mexicanum in its vertebrate host, the western fence lizard Sceloporus occidentalis. J Anim Ecol 64:177–185

    Article  Google Scholar 

  • Schall JJ, Sarni GA (1987) Malarial parasitism and the behavior of the lizard, Sceloporus occidentalis. Copeia 1987:84–93

    Article  Google Scholar 

  • Schall JJ, Prendeville HR, Hanley KA (2000) Prevalence of the tick Ixodes pacificus, on western fence lizards, Sceloporus occidentalis: trends by gender, size, season, site, and mite infestation. J Herpetol 34:160–163

    Article  Google Scholar 

  • Schoeler GB, Wikel SK (2001) Modulation of host immunity by haematophagous arthropods. Ann Trop Med Parasitol 95:755–771

    Article  PubMed  CAS  Google Scholar 

  • Sinervo B, Miles DB, Frankino WA, Klukowski M, DeNardo DF (2000) Testosterone, endurance, and Darwinian fitness: natural and sexual selection on the physiological bases of alternative male behaviors in side-blotched lizards. Horm Behav 38:222–233. doi:10.1006/hbeh.2000.1622

    Article  PubMed  CAS  Google Scholar 

  • Slowik TJ, Lane RS (2009) Feeding preferences of the immature stages of three western North American Ixodid ticks (Acari) for avian, reptilian, or rodent hosts. J Med Entomol 46:115–122. doi:10.1603/033.046.0115

    Article  PubMed  Google Scholar 

  • Sorci G, Clobert J, Michalakis Y (1996) Cost of reproduction and cost of parasitism in the common lizard, Lacerta vivipara. Oikos 76:121–130

    Article  Google Scholar 

  • Tinkle DW (1969) The concept of reproductive effort and its relation to the evolution of life histories of lizards. Am Nat 103:501–516

    Article  Google Scholar 

  • Tokarz RR, McMann S, Seitz L, John-Alder H (1998) Plasma corticosterone and testosterone levels during the annual reproductive cycle of male brown anoles (Anolis sagrei). Physiol Zool 71:139–146

    PubMed  CAS  Google Scholar 

  • Tschirren B, Fitze PS, Richner H (2003) Sexual dimorphism in susceptibility to parasites and cell-mediated immunity in great tit nestlings. J Anim Ecol 72:839–845. doi:10.1046/j.1365-2656.2003.00755.x

    Article  Google Scholar 

  • Tschirren B, Saladin V, Fitze PS, Schwabl H, Richner H (2005) Maternal yolk testosterone does not modulate parasite susceptibility or immune function in great tit nestlings. J Anim Ecol 74:675–682. doi:10.1111/j.1365-2656.2005.00963.x

    Article  Google Scholar 

  • Tuomi J, Hakala T, Haukioja E (1983) Alternative concepts of reproductive effort, costs of reproduction, and selection in life-history evolution. Integr Comp Biol 23:25–34. doi:10.1093/icb/23.1.25

    Article  Google Scholar 

  • Uller T, Olsson M (2003) Prenatal exposure to testosterone increases ectoparasite susceptibility in the common lizard (Lacerta vivipara). Proc Roy Soc B 270:1867–1870. doi:10.1098/rspb.2003.2451

    Article  CAS  Google Scholar 

  • Valen L (1973) A new evolutionary theory. Evol Theor 1:1–30

    Google Scholar 

  • Veiga JP, Salvador A, Merino S, Puerta M (1998) Reproductive effort affects immune response and parasite infection in a lizard: a phenotypic manipulation using testosterone. Oikos 82:313–318

    Google Scholar 

  • Vitt LJ, Congdon JD (1978) Body shape, reproductive effort, and relative clutch mass in lizards: resolution of a paradox. Am Nat 112:595–608

    Article  Google Scholar 

  • Vitt LJ, Van Loben Sels RC, Ohmart RD (1978) Lizard reproduction: annual variation and environmental correlates in the iguanid lizard Urosaurus graciosus. Herpetologica 34:241–253

    Google Scholar 

  • Vredevoe LK, Richter PJ, Madigan JE, Kimsey RB (1999) Association of Ixodes pacificus (Acari: Ixodidae) with the spatial and temporal distribution of equine granulocytic ehrlichiosis in California. J Med Entomol 36:551–561

    PubMed  CAS  Google Scholar 

  • Wallade SM, Rice MJ (1982) The sensory basis of tick feeding behaviour. In: Obenchain FD, Galun R (eds) Physiology of ticks. Current themes in tropical science. Pergamon Press, Oxford, pp 71–118

    Google Scholar 

  • Willadsen P, Jongejan F (1999) Immunology of the tick-host interaction and the control of ticks and tick-borne diseases. Parasitol Today 15:258–262

    Google Scholar 

  • Wikel SK (1996) Host immunity to ticks. Annu Rev Entomol 41:1–22

    Article  PubMed  CAS  Google Scholar 

  • Wikel SK, Bergmann D (1997) Tick-host immunology: significant advances and challenging opportunities. Parasitol Today 13:383–389. doi:10.1016/S0169-4758(97)01126-5

    Article  PubMed  CAS  Google Scholar 

  • Wikel SK, Ramachandra RN, Bergman DK (1994) Tick-induced modulation of the host immune response. Int J Parasitol 24:59–66. doi:10.1016/0020-7519(94)90059-0

    Article  PubMed  CAS  Google Scholar 

  • Wikel SK, Ramachandra RN, Bergman DK (1996) Arthropod modulation of host immune responses. In: Wikel SK (ed) The immunology of host-ectoparasitic arthropod relationships. CAB International, Wallingford, pp 107–130

    Google Scholar 

  • Wingfield JC, Hahn TP (1994) Testosterone and territorial behaviour in sedentary and migratory sparrows. Anim Behav 47:77–89. doi:10.1006/anbe.1994.1009

    Article  Google Scholar 

  • Zuk M (1990) Reproductive strategies and sex differences in disease susceptibility: an evolutionary viewpoint. Parasitol Today 6:231–233. doi:10.1016/0169-4758(90)90202-F

    Article  PubMed  CAS  Google Scholar 

  • Zuk M, McKean KA (1996) Sex differences in parasitic infections: patterns and processes. Int J Parasitol 26:1009–1024. doi:10.1016/S0020-7519(96)80001-4

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank J Booza, J Frazier, A Gunterman, M Holding, C Lind, E McAdams, and A Sidhu for field and lab assistance, D Brewster for assistance in building lizard enclosures, A Lazanoff and M Hall for providing the bulls for tick feedings, K McGaughey for assistance with statistical analyses, and IT Moore for running hormone radioimmunoassays. This research was supported by the California Polytechnic State University Biological Sciences Department, a grant from the Chicago Herpetological Society, and a Gaige Award from the American Society of Ichthyologists and Herpetologists. Study procedures were approved by the California Polytechnic State University, San Luis Obispo, Institutional Animal Care and Use Committee (protocol # 806) and the California Department of Fish and Game (California Scientific permit # 801072-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas B. Pollock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollock, N.B., Vredevoe, L.K. & Taylor, E.N. How do host sex and reproductive state affect host preference and feeding duration of ticks?. Parasitol Res 111, 897–907 (2012). https://doi.org/10.1007/s00436-012-2916-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-2916-8

Keywords

Navigation