Skip to main content
Log in

Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In present study, the bioactivity of latex-producing plant Pergularia daemia as well as synthesized silver nanoparticles (AgNPs) against the larval instars of Aedes aegypti and Anopheles stephensi mosquito larvae was determined. The range of concentrations of plant latex (1,000, 500, 250, 125, 62.25, and 31.25 ppm) and AgNPs (10, 5, 2.5, 1.25, 0.625, and 0.3125 ppm) were prepared. The LC50 and LC90 values for first, second, third, and fourth instars of synthesized AgNPs-treated first, second, third, and fourth instars of A. aegypti (LC50 = 4.39, 5.12, 5.66, 6.18; LC90 = 9.90, 11.13, 12.40, 12.95 ppm) and A. stephensi (LC50 = 4.41, 5.35, 5.91, 6.47; LC90 = 10.10, 12.04, 13.05, 14.08 ppm) were found many fold lower than crude latex-treated A. aegypti (LC50 = 55.13, 58.81, 75.66, 94.31; LC90 = 113.00, 118.25, 156.95, 175.71 ppm) and A. stephensi (LC50 = 81.47, 92.09, 96.07, 101.31; LC90 = 159.51, 175.97, 180.67, 190.42 ppm). The AgNPs did not exhibit any noticeable effects on Poecillia reticulata after either 24 or 48 h of exposure at their LC50 and LC90 values against fourth-instar larvae of A. aegypti and A. stephensi. The UV-visible analysis shows absorbance for AgNPs at 520 nm. TEM reveals spherical shape of synthesized AgNPs. Particle size analysis revealed that the size of particles ranges from 44 to 255 nm with average size of 123.50 nm. AgNPs were clearly negatively charged (zeta potential −27.4 mV). This is the first report on mosquito larvicidal activity P. daemia-synthesized AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Eco Entomol 18:265–266

    CAS  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318

    Article  CAS  Google Scholar 

  • Anjaneyulu ASN, Raju DVSN, Rao SS (1998) Chemical evaluation of Pergularia daemia. Ind J Chem 37:318–320

    Google Scholar 

  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Coll Surf A Physicochem Eng Asp 339:134–139

    Article  CAS  Google Scholar 

  • Deepak D (1995) Phytochemistry of Indian Asclepiadaceae. In: Kiew R (ed) The taxonomy and phytochemistry of the Asclepidaceae in tropical Asia. University Pertanian, Malaysia, pp 33–44

    Google Scholar 

  • Egorova EM, Revina AA (2000) Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids Surf A Physicochem Eng Asp 168:87–96

    Google Scholar 

  • Filho OEC, Paumgartten FJR (2000) Toxicity of Euphorbia milii latex and niclosamide to snails and non-target aquatic species. Ecotoxicol Environ Saf 46:342–350

    Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, Cambridge, pp 76–80

    Google Scholar 

  • Giridhar G, Deval K, Mittal PK, Vasudevan P (1984) Mosquito control by Calotropis procera latex. Pesticides 18:26–29

    Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  PubMed  CAS  Google Scholar 

  • Hebbar SS, Harsha VH, Shripathi V, Hedge GR (2010) Ethnomedicine of Dharward district in Karnataka, India plants use in oral health care. J Ethnopharmacol 94:261–266

    Article  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011a) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res. doi:10.1007/s00436-010-2242-y

  • Jayaseelan C, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G, Velayutham K, Rao KV, Karthik L, Raveendran S (2011b) Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites. Parasitol Res. doi:10.1007/s00436-011-2473-6

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Lopes KLB, Thadeo M, Azevedo AA, Soares AA, Meira RMSA (2009) Articulated laticifers of vegetative organs Mandevilla atroviolaceae (Apocynaceae, Apocynoideae). Botany 87:202–209

    Article  Google Scholar 

  • Marimuthu S, Rahuman AA, Govindasamy R, Thirunavukkarasu S, Arivarasan VK, Chidambaram J, Asokan B, Zahir AA, Elango G, Chinnaperumal K (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108:1541–154

    Article  PubMed  Google Scholar 

  • Mohammed S, Kasera PK, Shula JK (2004) Unexploited plants of potential medicinal value from the Indian Thar desert. Nat Prod Radian 3:61–132

    Google Scholar 

  • Morsy TA, Rahem MA, Allam KA (2001) Control of Musca domestica third instar larvae by the latex of Calotropis procera (Family: Asclepiadaceae). J Egyp Soc Parasitol 31:107–110

    Google Scholar 

  • Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2011a) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res. doi:10.1007/s00436-011-2704-x

  • Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011b) Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitol Res 109:1179–1187

    Article  PubMed  Google Scholar 

  • Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011c) Bioefficacy of Plumbago zeylanica (Plumbaginaceae) and Cestrum nocturnum (Solanaceae) plant extracts against Aedes aegypti (Diptera: Culicide) and nontarget fish Poecilia reticulata. Parasitol Res 108(5):1253–1263

    Article  PubMed  Google Scholar 

  • Rajakumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118(3):196–203

    Article  PubMed  CAS  Google Scholar 

  • Ramos MV, Bandeira GP, Freitas CDT, Nogueira NAP, Alencar NMN, Sousa PAS, Carvalho AFFU (2006) Latex constituents from Calotropis procera (Ait.) R.Br. display toxicity upon egg hatching and larvae of Aedes aegypti (Linn.). Brazil Mem Inst Oswaldo Cruz 101:503–510

    Article  Google Scholar 

  • Richardson A, Chan BC, Crouch RD, Janiec A, Chan BC, Crouch RD (2006) Synthesis of silver nanoparticles: an undergraduate laboratory using green approach. Chem Educ 11:331–333

    CAS  Google Scholar 

  • Sakthivadivel M, Danial T (2008) Evaluation of certain insecticidal plants for the control of vector mosquitoes viz. C. quinquefasciatus, An. stephensi and A. aegypti. Appl Entomol Zool 431:57–63

    Article  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109(3):823–831

    Article  PubMed  Google Scholar 

  • Sathish CJ, Sharma RA, Jain R, Mascalo N, Capasso F, Vijayvergia R et al (1998) Ethnopharmacological evaluation of Pergularia daemia (Forsk.) Chiov. Phytother Res 12:378–380

    Article  Google Scholar 

  • Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2009) Amaranthus oleracea and Euphorbia hirta: natural potential larvicidal agents against the urban Indian malaria vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 106:171–176

    Article  PubMed  Google Scholar 

  • Taubitz W, Cramer JP, Kapaun A, Pfeffer M, Drosten C, Dobler G, Burchard GD, Löscher T (2007) Chikungunya fever in travelers: clinical presentation and course. Clin Infect Dis 45(1):1–4

    Article  Google Scholar 

  • Thirunavukkarasu S, Rahuman AA, Govindasamy R, Marimuthu S, Asokan B, Chidambaram J, Zahir AA, Elango G, Chinnaperumal K (2010) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702

    Google Scholar 

  • WHO (1980) Expert Committee on Diabetes Mellitus. Second report. Technical report series 646. World Health Organization, Geneva, pp 12–15

    Google Scholar 

  • WHO (1996) Report of the WHO informal consultation on the evaluation on the testing of insecticides CTD/WHO PES/IC/96.1:69

  • WHO—World Health Organization 2009. http://www.who.int/mediacentre/factsheets/fs117/en/index.html. Accessed 12 Jan 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish V. Patil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, C.D., Borase, H.P., Patil, S.V. et al. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata . Parasitol Res 111, 555–562 (2012). https://doi.org/10.1007/s00436-012-2867-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-2867-0

Keywords

Navigation