Skip to main content

Advertisement

Log in

Characterization of Baylisascaris schroederi from Qinling subspecies of giant panda in China by the first internal transcribed spacer (ITS-1) of nuclear ribosomal DNA

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In the present study, a total of 20 nematode isolates, (including 10 male and 10 female worms) representing Baylisascaris schroederi from 5 Qinling subspecies of giant pandas (Ailuropoda melanoleuca) in Shaanxi Province of China, were characterized and grouped genetically by the first internal transcribed spacer (ITS-1) of nuclear ribosomal DNA (rDNA). The rDNA fragment spanning 3′ end of 18S rDNA, complete ITS-1 rDNA, and 5′ end of 5.8S rDNA were amplified and sequenced. The sequence variability in ITS-1 rDNA was examined within B. schroederi and among parasites in order Ascaridata available in GenBank™, and their phylogenetic relationships were also reconstructed. The sequences of ITS-1 rDNA for all the B. schroederi isolates were 427 bp in length, with no genetic variation detected among these isolates. Phylogenetic analyses based on the ITS-1 rDNA sequences revealed that all the male and female B. schroederi isolates sequenced in the present study were posited into the clade of genus Baylisascaris, sistered to zoonotic nematodes in genus Ascaris, and the ITS-1 rDNA sequence could distinguish different species in order Ascaridata. These results showed that the ITS-1 rDNA provides a suitable molecular marker for the inter-species phylogenetic analysis and differential identification of nematodes in order Ascaridata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Anderson TJ, Blouin MS, Beech RN (1998) Population biology of parasitic nematodes: applications of genetic markers. Adv Parasitol 41:219–283

    Article  PubMed  CAS  Google Scholar 

  • Arizono N, Yoshimura Y, Tohzaka N, Yamada M, Tegoshi T, Onishi K, Uchikawa R (2010) Ascariasis in Japan: is pig-derived Ascaris infecting humans? Jpn J Infect Dis 63:447–448

    PubMed  Google Scholar 

  • Arizono N, Miura T, Yamada M, Tegoshi T, Onishi K (2011) Human infection with Pseudoterranova azarasi roundworm. Emerg Infect Dis 17:555–556

    PubMed  Google Scholar 

  • Beaver PC (1969) The nature of visceral larva migrans. J Parasitol 55:3–12

    Article  PubMed  CAS  Google Scholar 

  • Burland TG (2000) DNASTAR's Lasergene sequence analysis software. Meth Mol Biol 132:71–91

    CAS  Google Scholar 

  • Chilton NB, Gasser RB, Beveridge I (1995) Differences in a ribosomal DNA sequence of morphologically indistinguishable species within the Hypodontus macropi complex (Nematoda: Strongyloidea). Int J Parasitol 25:647–651

    Article  PubMed  CAS  Google Scholar 

  • Damin L, Heqing H (2001) Heliconema minnanensisn. sp. (Physalopteroidae: Physalopteridae) and Raphidascaris trichiuri (Yin and Zhang) n. comb. (Ascaridoidea: Anisakidae) in marine fishes. J Parasitol 87:1090–1094

    PubMed  CAS  Google Scholar 

  • Dies KH (1979) Helminths recovered from black bears in the Peace River region of northwestern Alberta. J Wildl Dis 15:49–50

    PubMed  CAS  Google Scholar 

  • Garbin L, Mattiucci S, Paoletti M, González-Acuña D, Nascetti G (2011) Genetic and morphological evidences for the existence of a new species of Contracaecum (Nematoda: Anisakidae) parasite of Phalacrocorax brasilianus (Gmelin) from Chile and its genetic relationships with Congeners from fish-eating birds. J Parasitol 97:476–492

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  PubMed  CAS  Google Scholar 

  • He GZ, Niu LL, Yang GY, Deng JP, Wang S, Yu XM, Wang T, Gu XB, Chen WG (2008) Sequence analysis of ITS-2 rDNA of roundworms from Ailuropoda melanoleuca and seven rare wild animals. Chin Vet Sci 38:933–938 (in chinese)

    CAS  Google Scholar 

  • He G, Wang T, Yang G, Fei Y, Zhang Z, Wang C, Yang Z, Lan J, Luo L, Liu L (2009) Sequence analysis of Bs-Ag2 gene from Baylisascaris schroederi of giant panda and evaluation of the efficacy of a recombinant Bs-Ag2 antigen in mice. Vaccine 27:3007–3011

    Article  PubMed  CAS  Google Scholar 

  • Huang SY, Zhao GH, Fu BQ, Xu MJ, Wang CR, Wu SM, Zou FC, Zhu XQ (2011) Genomics and molecular genetics of Clonorchis sinensis: Current status and perspectives. Parasitol Int. doi:10.1016/j.parint.2011.06.008

  • Kijewska A, Dzido J, Shukhgalter O, Rokicki J (2009) Anisakid parasites of fishes caught on the African shelf. J Parasitol 95:639–645

    Article  PubMed  Google Scholar 

  • Kong FY, Yin PX (1958) Nematodes of wild animals in zoos of Beijing. Chin Anim Vet Sci 3:19–28 (in chinese)

    Google Scholar 

  • Lin RQ, Dong SJ, Nie K, Wang CR, Song HQ, Li AX, Huang WY, Zhu XQ (2007) Sequence analysis of the first internal transcribed spacer of rDNA supports the existence of the intermediate Fasciola between F. hepatica and F. gigantica in mainland China. Parasitol Res 101:813–817

    Article  PubMed  CAS  Google Scholar 

  • Loeffler IK, Montali RJ, Rideout BA (2006) Diseases and pathology of giant pandas. In: Wildt DE, Zhang AJ, Zhang HM, Janssen DL, Ellis S (eds) Giant pandas: biology, veterinary medicine and management. Cambridge University Press, NewYork, pp 388–390

    Google Scholar 

  • Mcintosh A (1939) A new nematode Ascaris schroederi from giant panda (Ailuropoda melanoleuca). Zoologica 24:355–357

    Google Scholar 

  • O’Lorcain P, Holland CV (2000) The public health importance of Ascaris lumbricoides. Parasitology 121:51–71

    Article  Google Scholar 

  • Page RD (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Peng J, Jiang Z, Hu J (2001) Status and conservation of giant panda. Folia Zoologica 50:81–88

    Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Qiu X, Mainka SA (1993) A review of mortality in the giant panda (Ailuropoda melanoleuca). J Zoo Wildl Med 24:425–429

    Google Scholar 

  • Quiazon KM, Yoshinaga T, Santos MD, Ogawa K (2009) Identification of larval Anisakis spp. (Nematoda: Anisakidae) in Alaska pollock (Theragra chalcogramma) in northern Japan using morphological and molecular markers. J Parasitol 95:1227–1232

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Matsuo K, Osani A, Kamiya H, Akao N, Owaki S (2004) Larva migrants by Balisascaris transfuga: fatal neurological diseases in Mongolian jirds, but not in mice. J Parasitol 90:774–781

    Article  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (and other methods). Sinauer, Sunderland

    Google Scholar 

  • Szostakowska B, Fagerholm HP (2007) Molecular identification of two strains of third-stage larvae of Contracaecum rudolphii sensu lato (Nematoda: Anisakidae) from fish in Poland. J Parasitol 93:961–964

    Article  PubMed  CAS  Google Scholar 

  • Szostakowska B, Myjak P, Kur J (2002) Identification of anisakid nematodes from the Southern Baltic Sea using PCR-based methods. Mol Cell Probes 16:111–118

    Article  PubMed  CAS  Google Scholar 

  • Szostakowska B, Myjak P, Wyszyński M, Pietkiewicz H, Rokicki J (2005) Prevalence of anisakin nematodes in fish from Southern Baltic Sea. Pol J Microbiol 54:41–45

    PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Testini G, Papini R, Lia RP, Parisi A, Dantas-Torres F, Traversa D, Otranto D (2011) New insights into the morphology, molecular characterization and identification of Baylisascaris transfuga (Ascaridida, Ascarididae). Vet Parasitol 175:97–102

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tkach VV, Kuzmin Yu I, Snyder SD (2010) Krefftascaris (Nematoda, Ascaridoidea) from Australian side-necked turtles with description of Krefftascaris sharpiloi SP. N. from Chelodina rugosa. Vestn Zool 44:e–1–e–11

    Google Scholar 

  • Wan QH, Hua W, Fang SG (2005) A new subspecies of giant panda (Ailuropoda melanoleuca) from Shaanxi, China. J Mammal 86:397–402

    Article  Google Scholar 

  • Wang T, He G, Yang G, Fei Y, Zhang Z, Wang C, Yang Z, Lan J, Luo L, Liu L (2008) Cloning, expression and evaluation of the efficacy of a recombinant Baylisascaris schroederi Bs-Ag3 antigen in mice. Vaccine 26:6919–6924

    Article  PubMed  CAS  Google Scholar 

  • Wang CR, Li L, Ni HB, Zhai YQ, Chen AH, Chen J, Zhu XQ (2009) Orientobilharzia turkestanicum is a member of Schistosoma genus based on phylogenetic analysis using ribosomal DNA sequences. Exp Parasitol 121:193–197

    Article  PubMed  CAS  Google Scholar 

  • Wang CR, Gao JF, Zhu XQ, Zhao Q (2011) Characterization of Bunostomum trigonocephalum and Bunostomum phlebotomum from sheep and cattle by internal transcribed spacers of nuclear ribosomal DNA. Res Vet Sci. doi:10.1016/j.rvsc.2010.10.024

  • Xie Y, Zhang Z, Wang C, Lan J, Li Y, Chen Z, Fu Y, Nie H, Yan N, Gu X, Wang S, Peng X, Yang G (2011) Complete mitochondrial genomes of Baylisascaris schroederi, Baylisascaris ailuri and Baylisascaris transfuga from giant panda, red panda and polar bear. Gene 482(1–2):59–67

    Article  PubMed  CAS  Google Scholar 

  • Yang GY (1998) Advance on parasites and parasitosis of giant panda. Chin J Vet Sci 18:158–206–208, in chinese

    Google Scholar 

  • Zhang ZH, Wei FW (2006) (2006) Giant panda ex-situ conservation theory and practice. Science Press, Beijing

    Google Scholar 

  • Zhang JS, Daszak P, Huang HL, Yang GY, Kilpatrick AM, Zhang S (2008) Parasite threat to panda conservation. EcoHealth 5:6–9

    Article  PubMed  Google Scholar 

  • Zhang H, Wang XH, Fan WF, Yuan M (2010) Review of parasitosis of gaint panda. Gansu Husb Vet 212:40–43 (in chinese)

    Google Scholar 

  • Zhang L, Yang X, Wu H, Gu X, Hu Y, Wei F (2011) The parasites of giant pandas: individual-based measurement in wild animals. J Wildl Dis 47:164–171

    PubMed  Google Scholar 

  • Zhao GH, Mo XH, Zou FC, Li J, Weng YB, Lin RQ (2009) Genetic variability among Schistosoma japonicum isolates from different endemic regions in China revealed by sequences of three mitochondrial DNA genes. Vet Parasitol 162:67–74

    Article  PubMed  CAS  Google Scholar 

  • Zhao GH, Li J, Lin RQ, Zou FC, Liu W, Yuan ZG, Mo XH, Song HQ, Weng YB, Zhu XQ (2010) An effective sequence characterized amplified region-PCR method derived from restriction site-amplified polymorphism for the identification of female Schistosoma japonicum of zoonotic significance. Electrophoresis 31:641–647

    Article  PubMed  CAS  Google Scholar 

  • Zhao GH, Blair D, Li XY, Li J, Lin RQ, Zou FC, Sugiyama H, Mo XH, Yuan ZG, Song HQ, Zhu XQ (2011a) The ribosomal intergenic spacer (IGS) region in Schistosoma japonicum: structure and comparisons with related species. Infect Genet Evol 11:610–617

    Article  PubMed  CAS  Google Scholar 

  • Zhao GH, Li J, Chen F, Zou FC, Yang JF, Sugiyama H, Xu MJ, Lin Q, Lin RQ, Zhu XQ (2011b) Variability in intron sequences of housekeeping and antigen-coding genes among Schistosoma japonicum isolates in mainland China. Parasitol Int 60:170–174

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Chilton NB, Jacobs DE, Boes J, Gasser RB (1999) Characterisation of Ascaris from human and pig hosts by nuclear ribosomal DNA sequences. Int J Parasitol 29:469–478

    Article  PubMed  CAS  Google Scholar 

  • Zhu XQ, Podolska M, Liu JS, Yu HQ, Chen HH, Lin ZX, Luo CB, Song HQ, Lin RQ (2007) Identification of anisakid nematodes with zoonotic potential from Europe and China by single-strand conformation polymorphism analysis of nuclear ribosomal DNA. Parasitol Res 101:1703–1707

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Project support was provided in part by grants from the Special Fund for Talents in Northwest A & F University to GHZ (Z109021107 and 2010BSJJ015) and Opening Funds of State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, CAAS to GHZ (SKLVEB2011KFKT011) and SKY (SKLVEB2009KFK003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. K. Yu or G. H. Zhao.

Additional information

Q. Lin and H.M. Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Q., Li, H.M., Gao, M. et al. Characterization of Baylisascaris schroederi from Qinling subspecies of giant panda in China by the first internal transcribed spacer (ITS-1) of nuclear ribosomal DNA. Parasitol Res 110, 1297–1303 (2012). https://doi.org/10.1007/s00436-011-2618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2618-7

Keywords

Navigation