Skip to main content

Advertisement

Log in

Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The purpose of the present study was to investigate the acaricidal and larvicidal activity against the larvae of Haemaphysalis bispinosa Neumann (Acarina: Ixodidae) and larvae of hematophagous fly Hippobosca maculata Leach (Diptera: Hippoboscidae) and against the fourth-instar larvae of malaria vector, Anopheles stephensi Liston, Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae) of synthesized silver nanoparticles (AgNPs) utilizing aqueous leaf extract from Musa paradisiaca L. (Musaceae). The color of the extract changed to light brown within an hour, and later it changed to dark brown during the 30-min incubation period. AgNPs results were recorded from UV–vis spectrum at 426 nm; Fourier transform infrared (FTIR) analysis confirmed that the bioreduction of Ag+ ions to silver nanoparticles are due to the reduction by capping material of plant extract, X-ray diffraction (XRD) patterns clearly illustrates that the nanoparticles formed in the present synthesis are crystalline in nature and scanning electron microscopy (SEM) support the biosynthesis and characterization of AgNPs with rod in shape and size of 60–150 nm. After reaction, the XRD pattern of AgNPs showed diffraction peaks at 2θ = 34.37°, 38.01°, 44.17°, 66.34° and 77.29° assigned to the (100), (111), (102), (110) and (120) planes, respectively, of a faced centre cubic (fcc) lattice of silver were obtained. For electron microscopic studies, a 25 μl sample was sputter-coated on copper stub, and the images of nanoparticles were studied using scanning electron microscopy. The spot EDX analysis showed the complete chemical composition of the synthesized AgNPs. The parasite larvae were exposed to varying concentrations of aqueous extract of M. paradisiaca and synthesized AgNPs for 24 h. In the present study, the percent mortality of aqueous extract of M. paradisiaca were 82, 71, 46, 29, 11 and 78, 66, 38, 31and 16 observed in the concentrations of 50, 40, 30, 20, 10 mg/l for 24 h against the larvae of H. bispinosa and Hip. maculata, respectively. The maximum efficacy was observed in the aqueous extract of M. paradisiaca against the H. bispinosa, Hip. maculata, and the larvae of A. stephensi, C. tritaeniorhynchus with LC50 values of 28.96, 31.02, 26.32, and 20.10 mg/lm, respectively (r 2 = 0.990, 0.968, 0.974, and 0.979, respectively). The synthesized AgNPs of M. paradisiaca showed the LC50 and r 2 values against H. bispinosa, (1.87 mg/l; 0.963), Hip. maculata (2.02 mg/l; 0.976), and larvae of A. stephensi (1.39; 0.900 mg/l), against C. tritaeniorhynchus (1.63 mg/l; 0.951), respectively. The χ 2 values were significant at p < 0.05 level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242(3):263–269

    Article  PubMed  CAS  Google Scholar 

  • Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81(1):81–86

    Article  PubMed  CAS  Google Scholar 

  • Amer A, Mehlhorn H (2006a) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Larvicidal effects of various essential oils against Aedes, Anopheles and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Anjali CH, SudheerKhan S, Goshen KM, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936

    Article  PubMed  CAS  Google Scholar 

  • Anyaele OO, Amusan AAS (2003) Toxicity of Hexanoic extracts of Dennettia tripetala (G. Baxer) on larvae of Aedes aegypti (L). Afr J Biomed Res 6:49–53

    Google Scholar 

  • Bagavan A, Kamaraj C, Elango G, Zahir AA, Rahuman AA (2009) Adulticidal and larvicidal efficacy of some medicinal plant extracts against tick, fluke and mosquitoes. Vet Parasitol 166:286–292

    Article  PubMed  CAS  Google Scholar 

  • Bansal SK, Singh KV (1995) Susceptibility status of two species of Japanese encephalitis vectors to insecticides in the Thar Desert, district Bikaner (Rajasthan). Indian J Med Res 101:190–192

    PubMed  CAS  Google Scholar 

  • Benn T, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  PubMed  CAS  Google Scholar 

  • Dasari TP, Hwang HM (2010) The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage. Sci Total Environ 408:5817–5823

    Article  PubMed  CAS  Google Scholar 

  • Dhiman RC, Pahw S, Dhillon GP, Dash AP (2010) Climate change and threat of vector-borne diseases in India: are we prepared? Parasitol Res 106(4):763–773

    Article  PubMed  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  PubMed  CAS  Google Scholar 

  • FAO (2004) Ticks: acaricide resistance: diagnosis management and prevention. In: Guidelines resistance management and integrated parasite control in ruminants. FAO Animal Production and Health Division, Rome

  • Fernandes FF, Freitas EPS (2007) Acaricidal activity of an oleoresinous extract from Copaifera reticulata (Leguminosae: Caesalpinioideae) against larvae of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet Parasitol 147:150–154

    Article  Google Scholar 

  • Fernandes FF, Freitas EPS, Costa AC, Silva IG (2005) Larvicidal potential of Sapindus saponaria to control the cattle tick Boophilus microplus. Pesqui Agropecu Bras 40:1243–1245

    Article  Google Scholar 

  • Ghosh S, Bansal GC, Gupta SC, Ray D, Khan MQ, Irshad H, Shahiduzzaman M, Seitzer U, Jabbar AS (2007) Status of tick distribution in Bangladesh, India and Pakistan. Parasitol Res 101:207–216

    Article  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnol 18:285604

    Article  Google Scholar 

  • Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley, Hoboken

    Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  PubMed  CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res. doi:10.1007/s00436-010-2242-y

  • Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104(5):1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A, Elango G, Rajakumar G, Zahir AA, Marimuthu S, Santhoshkumar T, Jayaseelan C (2010) Evaluation of medicinal plant extracts against blood-sucking parasites. Parasitol Res 106:1403–1412

    Article  PubMed  Google Scholar 

  • Kang M, Jung R, Kim HS, Youk JH, Jin HJ (2007) Silver nanoparticles incorporated electrospun silk fibers. J Nanosci Nanotechnol 7(11):3888–3891

    Article  PubMed  CAS  Google Scholar 

  • Karthik L, Gaurav K, Bhaskara Rao KV, Rajakumar G, Abdul Rahuman A (2011) Larvicidal, repellent and ovicidal activity of marine actinobacteria extracts against Culex tritaeniorhynchus and Culex gelidus. Parasitol Res 108:1447–1455

  • Kim J, Kim S, Lee S (2010) Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Nanotoxicol. doi:10.3109/17435390.2010.508137

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Velayutham K (2011) Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol Res. doi:10.1007/s00436-011-2277-8

    Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerf 76(1):50–56

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SC, Yadav SK (2010) Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J Chem Tech Biotechnol 85(10):1301–1309

    Article  CAS  Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: Relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283

    Article  PubMed  CAS  Google Scholar 

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2010) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–1549

    Google Scholar 

  • Minjas JN, Sarda RK (1986) Laboratory observations on the toxicity of Swartzia madagascariens (Leguminaceae) extract to mosquito larvae. Trans R Soc Trop Med Hyg 80:460–461

    Article  PubMed  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramfrez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  PubMed  CAS  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800

    Article  CAS  Google Scholar 

  • Nuchuchua O, Sakulku U, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions. AAPS Pharm Sci Technol 4:1234–1242

    Article  Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    Article  PubMed  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  PubMed  Google Scholar 

  • Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvitek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340

    Article  PubMed  CAS  Google Scholar 

  • Parashar BD, Gupta GP, Rao KM (1991) Control of the haematophagous fly Hippobosca muculatu, a serious pest of equines, by deltamethrin. Med Vet Entomol 5:363–367

    Article  PubMed  CAS  Google Scholar 

  • Parashar A, Gupta SK, Kumar A (2009) Studies on separation techniques of pomegranate seeds and their effect on quality of Anardana. Afr J Biochem Res 3(10):340–343

    CAS  Google Scholar 

  • Posgai R, Ahamed M, Hussain SM, Rowe JJ, Nielsen MG (2009) Inhalation method for delivery of nanoparticles to the Drosophila respiratory system for toxicity testing. Sci Total Environ 408(2):439–443

    Article  PubMed  CAS  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71:553–555

    Article  PubMed  CAS  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008a) Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 102(5):867–873

    Article  PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008b) Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet. Parasitol Res 102:981–988

    Article  PubMed  Google Scholar 

  • Rajakumar G, Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop. doi:10.1016/j.actatropica.2011.03.003

  • Rajesh W, Raut Niranjan S, Kolekar Jaya R, Lakkakula Vijay D, Mendhulkar Sahebrao B, Kashid (2010) Extracellular synthesis of silver nanoparticles using dried leaves of Pongamia pinnata (L) Pierre. Nano-Micro Lett 2:106–113

    Google Scholar 

  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA, Santhoshkumar T, Kirthi AV, Jayaseelan C, Marimuthu S (2011) Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol Res. doi. 10.1007/s00436-011-2387-3

  • Reddy PJ, Krishna D, Murthy US, Jamil K (1992) A microcomputer FORTRAN program for rapid determination of lethal concentration of biocides in mosquito control. Comput Appl Biosci 8:209–213

    PubMed  CAS  Google Scholar 

  • Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett 3:129–133

    Article  Google Scholar 

  • Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 372:105–111

    Article  PubMed  CAS  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res. doi:10.1007/s00436-011-2328-10

    Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702

    Article  PubMed  Google Scholar 

  • Sap-lam N, Homklinchan C, Larpudomlert R, Warisnoicharoen W, Sereemaspun A, Dubas ST (2010) UV Irradiation-induced silver nanoparticles as mosquito Larvicides. J App Sci 10(23):3132–3136

    Article  Google Scholar 

  • Sathishkumar M, Sneha K, Won SW, Cho CWS, Kim Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf Biointerfaces 73:332–338

    Article  CAS  Google Scholar 

  • Schneider D (2000) Using Drosophila as a model system. Nat Rev Gen 1:218–226

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  PubMed  CAS  Google Scholar 

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2010) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicit in earthworms (Eiseniafetida). Nanotoxicology. doi:10.3109/17435390.2010.537382

    PubMed  Google Scholar 

  • Siddiqui BS, Afshan F, Gulzar T, Sultana R, Naqvi SN, Tariq RM (2003) Tetracyclic triterpenoids from the leaves of Azadirachta indica and their insecticidal activities. Chem Pharm Bull (Tokyo) 51(4):415–417

    Article  CAS  Google Scholar 

  • Sing NC, Johnston LAY, Leatch G (1983) The economics of cattle tick control in the dry tropical Australia. Aust Vet J 60:37–39

    Article  PubMed  CAS  Google Scholar 

  • Solomon T (2004) Flavivirus encephalitis. N Engl J Med 351:370–378

    Article  PubMed  CAS  Google Scholar 

  • Soulsby EJL (1982) Helminths, arthropods and protozoa of domesticated animals. Bailliere Tindall, London

    Google Scholar 

  • SPSS (2007) SPSS for Windows, version 16.0. Release 16.0.0Chicago, IL, USA

  • Van den Broek AH, Huntley JF, Halliwell RE, Machell J, Taylor M, Miller HR (2003) Cutaneous hypersensitivity reactions to Psoroptes ovis and Der p 1 in sheep previously infested with P. ovis—the sheep scab mite. Vet Immunol Immunopathol 91:105–117

    Article  PubMed  Google Scholar 

  • Vandergheynst JS, Scher H, Guo HY (2006) design of formulations for improved biological control agent viability and sequestration during storage. Ind Biotechnol 2(3):213–219

    Article  CAS  Google Scholar 

  • Vandergheynst J, Scher H, Guo HY, Schultz D (2007) Water-in-oil emulsions that improve the storage and delivery of the biolarvacide lagenidium giganteum. Biocontrol 52:207–229

    Article  CAS  Google Scholar 

  • Vilchis-Nestora AR, Avalos-Borjaa M, Gómezb SA, Hernándezb JA, Olivasa A, Zepedaa TA (2009) Alternative bio-reduction synthesis method for the preparation of Au(AgAu)/SiO2–Al2O3 catalysts: Oxidation and hydrogenation of CO. Appl Catal B Environ 90:64–73

    Article  Google Scholar 

  • Wall R (2007) Ectoparasites: future challenges in a changing world. Vet Parasitol 1481:62–74

    Article  Google Scholar 

  • Watanabe M, Takebe S, Kobashi K (1991) High paraoxon-hydrolyzing activity in organophosphorus insecticide-resistant mosquitoes. Chem Pharm Bull (Tokyo) 39(4):980–985

    Article  CAS  Google Scholar 

  • WHO (1996) Report of the WHO informal consultation on the evaluation on the testing of insecticides. CTD/WHO PES/IC/ 96.1. WHO, Geneva, p 69

    Google Scholar 

  • WHO (2005) World malaria report. Geneva, WHO/HTM/MAL/2005:1102

  • Willems, van den Wildenberg (2005) Roadmap report on nanoparticles. W&W, Barcelona

    Google Scholar 

  • Wise JP Sr, Goodale BC, Wise SS, Craig GA, Pongan AF, Walter RB (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97(1):34–41

    Article  PubMed  CAS  Google Scholar 

  • Zhao CM, Wang WX (2010) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem. doi:10.1002/451

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to C. Abdul Hakeem of the College Management; Dr. S. Mohammed Yousuff, Principal; and Dr. K. Abdul Subhan, HOD of Zoology Department for providing us the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Abdul Rahuman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaseelan, C., Rahuman, A.A., Rajakumar, G. et al. Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites. Parasitol Res 111, 921–933 (2012). https://doi.org/10.1007/s00436-011-2473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2473-6

Keywords

Navigation