Skip to main content

Advertisement

Log in

Antiplasmodial potential of medicinal plant extracts from Malaiyur and Javadhu hills of South India

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The emergence and spread of Plasmodium falciparum with resistance to chloroquine (CQ), the safest and cheapest anti-malarial drug, coupled with the increasing cost of alternative drugs especially in developing countries have necessitated the urgent need to tap the potential of plants for novel anti-malarials. The present study investigates the anti-malarial activity of the methanolic extracts of 13 medicinal plants from the Malaiyur and Javadhu hills of South India against blood stage CQ-sensitive (3D7) and CQ-resistant (INDO) strains of P. falciparum in culture using the fluorescence-based SYBR Green I assay. Sorbitol-synchronized parasites were incubated under normal culture conditions at 2% hematocrit and 1% parasitemia in the absence or presence of increasing concentrations of plant extracts. CQ and artemisinin were used as positive controls, while 0.4% DMSO was used as the negative control. The cytotoxic effects of extracts on host cells were assessed by functional assay using HeLa cells cultured in RPMI containing 10% fetal bovine serum, 0.21% sodium bicarbonate and 50 μg/mL gentamycin (complete medium). Plant extracts (bark methanol extracts of Annona squamosa (IC50, 30 μg/mL), leaf extracts of Ocimum gratissimum (IC50, 32 μg/mL), Ocimum tenuiflorum (IC50, 31 μg/mL), Solanum torvum (IC50, 31 μg/mL) and Justicia procumbens (IC50, 63 μg/mL), showed moderate activity. The leaf extracts of Aristolochia indica (IC50, 10 μg/mL), Cassia auriculata (IC50, 14 μg/mL), Chrysanthemum indicum (IC50, 20 μg/mL) and Dolichos biflorus (IC50, 20 μg/mL) showed promising activity and low activity was observed in the flower methanol extracts of A. indica , leaf methanol extract of Catharanthus roseus, and Gymnema sylvestre (IC50, >100 μg/mL). These four extracts exhibited promising IC50 (μg/mL) of 17, 24, 19 and 24 respectively also against the CQ resistant INDO strain of P. falciparum. The high TC50 in mammalian cell cytotoxicity assay and the low IC50 in anti-malarial P. falciparum assay indicates selectivity and good resistance indices in the range of 0.9–1.7 for leaf extracts of A. indica, C. auriculata, C. indicum and D. biflorus suggests that these may serve as anti-malarial agents even in their crude form. These results indicate a possible explanation of the traditional use of some of these medicinal plants against malaria or malaria-like conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abiodun O, Gbotosho G, Ajaiyeoba E, Happi T, Falade M, Wittlin S, Sowunmi A, Brun R, Oduola A (2011) In vitro antiplasmodial activity and toxicity assessment of some plants from Nigerian ethnomedicine. Pharm Biol 49(1):9

    Article  PubMed  Google Scholar 

  • Adamu M, Nwosu CO, Agbede RI (2009) Anti-trypanosomal effects of aqueous extract of Ocimum gratissimum (Lamiaceae) leaf in rats infected with Trypanosoma brucei brucei. Afr J Tradit Complement Altern Med 6(3):262–267

    PubMed  CAS  Google Scholar 

  • Adzu B, Abbah J, Vongtau H, Gamaniel K (2003) Studies on the use of Cassia singueana in malaria ethnopharmacy. J Ethnopharmacol 88(2–3):261–267

    Article  PubMed  Google Scholar 

  • Agomo PU, Idigo JC, Afolabi BM (1992) “Antimalarial” medicinal plants and their impact on cell populations in various organs of mice. Afr J Med Med Sci 21(2):39–46

    PubMed  CAS  Google Scholar 

  • Ahmed el-HM, Nour BY, Mohammed YG, Khalid HS (2010) Antiplasmodial activity of some medicinal plants used in Sudanese folk-medicine. Environ Health Insights 4:1–6

    Google Scholar 

  • Asano J, Chiba K, Tada M, Yoshii T (1996) Antiviral activity of lignans and their glycosides from Justicia procumbens. Phytochemistry 42(3):713–717

    Article  PubMed  CAS  Google Scholar 

  • Astulla A, Zaima K, Matsuno Y, Hirasawa Y, Ekasari W, Widyawaruyanti A, Zaini NC, Morita H (2008) Alkaloids from the seeds of Peganum harmala showing antiplasmodial and vasorelaxant activities. J Nat Med 62(4):470–472

    Article  PubMed  CAS  Google Scholar 

  • Atal CK, Kapur BM (1977) Cultivation and utilization of medicinal and aromatic plants. Regional Research Laboratory, Jammu Tawai, p 138

    Google Scholar 

  • Bagavan A, Kamaraj C, Elango G, Zahir AA, Rahuman AA (2009) Adulticidal and larvicidal efficacy of some medicinal plant extracts against tick, fluke and mosquitoes. Vet Parasitol 166:286–292

    Article  PubMed  CAS  Google Scholar 

  • Bagavan A, Rahuman AA, Kaushik NK, Sahal D (2011a) In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitol Res 108:15–22

    Article  PubMed  Google Scholar 

  • Bagavan A, Rahuman AA, Kamaraj C, Kaushik NK, Mohanakrishnan D, Sahal D (2011b) Antiplasmodial activity of botanical extracts against Plasmodium falciparum. Parasitol Res 108:1099–1109

    Google Scholar 

  • Banchio E, Valladares G, Defago M, Palacios S, Carpinella C (2003) Effects of Melia azedarach (Meliaceae) fruit extracts on the leafminer Liriomyza huidobrensis (Diptera: Agromyzidae): assessment in laboratory and field experiments. Ann Appl Biol 143:187–193

    Article  Google Scholar 

  • Bermejo A, Figadere B, Zafra-Polo MC, Barrachina I, Estornell E, Cortes D (2005) Acetogenins from Annonaceae: recent progress in isolation, synthesis and mechanisms of action. Nat Prod Rep 22:269–303

    Article  PubMed  CAS  Google Scholar 

  • Carpinella MC, Miranda M, Almirón WR, Ferrayoli CG, Almeida FL, Palacios SM (2007) In vitro pediculicidal and ovicidal activity of an extract and oil from fruits of Melia azedarach L. Am Acad Dermatol 56:250–256

    Article  Google Scholar 

  • Charoenchai P, Vajrodaya S, Somprasong W, Mahidol C, Ruchirawat S, Kittakoop P (2010) Part 1: antiplasmodial, cytotoxic, radical scavenging and antioxidant activities of Thai plants in the family Acanthaceae. Planta Med 76(16):1940–1943

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Li S, Sun F, Han H, Zhang X, Fan Y, Tai G, Zhou Y (2010) In vivo antimalarial activities of glycoalkaloids isolated from Solanaceae plants. Pharm Biol 48(9):1018–1024

    Article  PubMed  CAS  Google Scholar 

  • Cox NH (2000) Permethrin treatment in scabies infestation: importance of the correct formulation. Clin Rev 320:3–38

    Google Scholar 

  • Craft JC (2008) Challenges facing drug development for malaria. Curr Opin Microbiol 11:428–433

    Article  PubMed  CAS  Google Scholar 

  • da Silva Filho AA, Resende DO, Fukui MJ, Santos FF, Pauletti PM, Cunha WR, Silva ML, Gregório LE, Bastos JK, Nanayakkara NP (2009) In vitro antileishmanial, antiplasmodial and cytotoxic activities of phenolics and triterpenoids from Baccharis dracunculifolia D. C. (Asteraceae). Fitoterapia 80(8):478–482

    Article  PubMed  Google Scholar 

  • de Andrade-Neto VF, da Silva T, Lopes LM, do Rosário VE, de Pilla Varotti F, Krettli AU (2007) Antiplasmodial activity of aryltetralone lignans from Holostylis reniformis. Antimicrob Agents Chemother 51(7):2346–2350

    Article  PubMed  Google Scholar 

  • de Mesquita ML, Grellier P, Mambu L, de Paula JE, Espindola LS (2007) In vitro antiplasmodial activity of Brazilian Cerrado plants used as traditional remedies. J Ethnopharmacol 110(1):165–170

    Article  PubMed  Google Scholar 

  • El Tahir A, Satti GM, Khalid SA (1999) Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (Lam.) Exell. J Ethnopharmacol 64(3):227–233

    Article  PubMed  Google Scholar 

  • Esmaeili S, Naghibi F, Mosaddegh M, Sahranavard S, Ghafari S, Abdullah NR (2009) Screening of antiplasmodial properties among some traditionally used Iranian plants. J Ethnopharmacol 121(3):400–404

    Article  PubMed  Google Scholar 

  • Fall D, Badiane M, Ba D, Loiseau P, Bories C, Gleye C, Laurens A, Hocquemiller R (2003) Antiparasitic effect of Senegalese Annonaceae used in traditional medicine. Dakar Méd 48(2):112–116

    PubMed  CAS  Google Scholar 

  • Gajmer T, Singh R, Saini RK, Kalidhar SB (2002) Effect of methanolic extracts of neem (Azadirachta indica A. Juss) and bakain (Melia azedarach L.) seeds on oviposition and egg hatching of Earias vittella (Fab.) (Lepidoptera: Noctuidae). J Appl Entomol 126:238–243

    Article  Google Scholar 

  • Garimella TS, Jolly CI, Narayanan S (2001) In vitro studies on antilithiatic activity of seeds of Dolichos biflorus Linn. and rhizomes of Bergenia ligulata Wall. Phytother Res 15:351–355

    Article  PubMed  CAS  Google Scholar 

  • Gessler MC, Nkunya MHH, Mwasumbi LB, Heinrich M, Tanner M (1994) Screening Tanzanian medicinal plants for antimalarial activity. Acta Trop 56:65–77

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Sharma SB, Singh UR, Bansal SK, Prabhu KM (2010) Elucidation of mechanism of action of Cassia auriculata leaf extract for its antidiabetic activity in streptozotocin-induced diabetic rats. J Med Food 13(3):528–534

    Article  PubMed  CAS  Google Scholar 

  • Hammad AEM, Zournajian H, Talhouk S (2001) Efficacy of extracts of Melia azedarach L. callus, leaves and fruits against adults of the sweet potato whitefly Bemisia tabaci (Homoptera: Aleyrodidae). J Appl Entomol 125:483–488

    Article  Google Scholar 

  • Harborn J (1985) Introduction to ecological biochemistry [Russian translation]. Graevskii BM (ed). Mir, Moscow

  • Hay SI, Gething PW, Snow RW (2010) India's invisible malaria burden. Lancet 9754:1716–1717

    Article  Google Scholar 

  • Hussain AA, Mohammed AA, Ibrahim HH, Abbas AH (2009) Study the biological activities of Tribulus terrestris extracts. World Aca Sci Eng Technol 57:433–435

  • Irungu BN, Rukunga GM, Mungai GM, Muthaura CN (2007) In vitro antiplasmodial and cytotoxicity activities of 14 medicinal plants from Kenya. S Afr J Bot 73:204–207

    Article  Google Scholar 

  • Iwu MM (1993) Handbook of African medicinal plants. CRC, Boca Raton, FL, pp 214–215

  • Kamaraj C, Abdul Rahman A, Bagavan A, Abduz Zahir A, Elango G, Kandan P, Rajakumar G, Marimuthu S, Santhoshkumar T (2010a) Larvicidal efficacy of medicinal plant extracts against Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Trop Biomed 27(2):211–219

    PubMed  CAS  Google Scholar 

  • Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Kamaraj C, Rahuman AA (2010) Efficacy of anthelmintic properties of medicinal plant extracts against Haemonchus contortus. Res Vet Sci. doi:10.1016/j.rvsc.2010.09.018

    PubMed  Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A, Elango G, Rajakumar G, Zahir AA, Marimuthu S, Santhoshkumar T, Jayaseelan C (2010b) Evaluation of medicinal plant extracts against blood-sucking parasites. Parasitol Res 106(6):1403–12

    Article  PubMed  Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A, Mohamed MJ, Elango G, Rajakumar G, Zahir AA, Santhoshkumar T, Marimuthu S (2010c) Ovicidal and larvicidal activity of crude extracts of Melia azedarach against Haemonchus contortus (Strongylida). Parasitol Res 106:1071–1077

    Article  PubMed  Google Scholar 

  • Kamaraj C, Rahuman AA, Mahapatra A, Bagavan A, Elango G (2010d) Insecticidal and larvicidal activities of medicinal plant extracts against mosquitoes. Parasitol Res 107:1337–1349

    Article  PubMed  Google Scholar 

  • Kamaraj C, Rahuman AA, Elango G, Bagavan A, Zahir AA (2010e) Anthelmintic activity of botanical extracts against sheep gastrointestinal nematodes, Haemonchus contortus. Parasitol Res. doi:10.1007/s00436-010-2218-y

    Google Scholar 

  • Kayembe JS, Taba KM, Ntumba K, Tshiongo MTC, Kazadi TK (2010) In vitro anti-malarial activity of 20 quinones isolated from four plants used by traditional healers in the Democratic Republic of Congo. J Med Plant Res 4(11):991–994

    CAS  Google Scholar 

  • Khanna VG, Kannabiran K, Getti G (2009) Leishmanicidal activity of saponins isolated from the leaves of Eclipta prostrata and Gymnema sylvestre. Indian J Pharmacol 41(1):32–5

    Article  PubMed  CAS  Google Scholar 

  • Kostova I, Dinchev D, Rentsch GH, Dimitrov V, Ivanova A (2002) Two new sulfated furostanol saponins from Tribulus terrestris. Z Naturforsch 57(1–2):33–38

    CAS  Google Scholar 

  • Kumar S (1999) Malaria runs amok in India. New Sci, p 9

  • Laskar S, Bhattarcharyya UK, Sinhababu A, Basak BK (1998) Antihepatotoxic activity of kulthi (Dolichos biflorus) seed in rats. Fitoterapia 69:401–402

    Google Scholar 

  • Lee SE, Kim MR, Kim JH, Takeoka GR, Kim TW, Park BS (2008) Antimalarial activity of anthothecol derived from Khaya anthotheca (Meliaceae). Phytomedicine 15(6–7):533–535

    Article  PubMed  CAS  Google Scholar 

  • Liu XX, Alali FQ, Pilarinou E, McLaughlin JL (1999) Two bioactive mono-tetrahydrofuran acetogenins, annoglacins A and B, from Annona glabra. Phytochemistry 50:815–821

    Article  PubMed  CAS  Google Scholar 

  • Liu YG (1991) Pharmacological study and clinical apply of Chrysanthemum indicum. Shi Zhen Guo Yao 2:103

    Google Scholar 

  • López ML, Vommaro R, Zalis M, de Souza W, Blair S, Segura C (2010) Induction of cell death on Plasmodium falciparum asexual blood stages by Solanum nudum steroids. Parasitol Int 59(2):217–225

    Article  PubMed  Google Scholar 

  • Mahomoodally MF, Gurib-Fakim A, Subratty AH (2010) Screening for alternative antibiotics: an investigation into the antimicrobial activities of medicinal food plants of Mauritius. J Food Sci 75(3):173–177

    Article  Google Scholar 

  • Malebo HM, Tanja W, Cal M, Swaleh SA, Omolo MO, Hassanali A, Séquin U, Hamburger M, Brun R, Ndiege IO (2009) Antiplasmodial, anti-trypanosomal, anti-leishmanial and cytotoxicity activity of selected Tanzanian medicinal plants. Tanzan J Health Res 11(4):226–234

    PubMed  CAS  Google Scholar 

  • Maneerat W, Laphookhieo S, Koysomboon S, Chantrapromma K (2008) Antimalarial, antimycobacterial and cytotoxic limonoids from Chisocheton siamensis. Phytomedicine 12:1130–1134

    Article  Google Scholar 

  • Matsuda H, Morikawa T, Toguchida I, Harima S, Yoshikawa M (2002) Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: their inhibitory activities for rat lens aldose reductase. Chem Pharm Bull 50:972–975

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Muthu AK, Sethupathy S, Manavalan R, Karar PK (2005) Hypolipidemic effect of methanolic extract of Dolichos biflorus Linn. in high fat diet fed rats. Indian J Exp Biol 43:522–525

    PubMed  Google Scholar 

  • Nathan SS, Savitha G, George DK, Narmadha A, Suganya L, Chung PG (2006) Efficacy of Melia azedarach L. extract on the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour Technol 97(11):1316–1323

    Article  PubMed  CAS  Google Scholar 

  • Ndebia EJ, Kamga R, Nchunga-Anye Nkeh B (2007) Analgesic and anti-inflammatory properties of aqueous extract from leaves of Solanum torvum (Solanaceae). Afr J Tradit Complement Altern Med 4(2):240–244

    Google Scholar 

  • Nguta JM, Mbaria JM, Gakuya DW, Gathumbi PK, Kiama SG (2010) Antimalarial herbal remedies of Msambweni, Kenya. J Ethnopharmacol 128(2):424–432

    Article  PubMed  CAS  Google Scholar 

  • Noumi E, Dibakto TW (2000) Medicinal plants used for peptic ulcer in Bangangte region in theWestern part of Cameroon. Fitoterapia 71:402–412

    Article  Google Scholar 

  • Noumi E, Houngue F, Lontsi D (1999) Traditional medicines in prymary health care: plants used for the treatment of hypertension in Bafia Cameroon. Fitoterapia 70(2):134–139

    Article  Google Scholar 

  • Nour AM, Khalid SA, Kaiser M, Brun R, Abdallah WE, Schmidt TJ (2009) The antiprotozoal activity of sixteen asteraceae species native to Sudan and bioactivity-guided isolation of xanthanolides from Xanthium brasilicum. Planta Med 75(12):1363–1368

    Article  PubMed  CAS  Google Scholar 

  • Ody P (2000) The complete guide medicinal herbal. Dorling Kindersley, London, p 223

    Google Scholar 

  • Offiah VN, Chikwendu UA (1999) Antidiarrhoeal effects of Ocimum gratissimum leaf extract in experimental animals. J Ethnopharmacol 68(1–3):327–330

    Article  PubMed  CAS  Google Scholar 

  • Ofulla AV, Chege GM, Rukunga GM, Kiarie FK, Githure JI, Kofi-Tsekpo MW (1995) In vitro antimalarial activity of extracts of Albizia gummifera, Aspilia mossambicensis, Melia azedarach and Azadirachta indica against Plasmodium falciparum. Afr J Health Sci 2(2):309–311

    PubMed  Google Scholar 

  • Osorio E, Arango GJ, Jiménez N, Alzate F, Ruiz G, Gutiérrez D, Paco MA, Giménez A, Robledo S (2007) Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae. J Ethnopharmacol 11(3):630–635

    Article  Google Scholar 

  • Osujih M (1993) Exploration of the frontiers of tradomedical practices: basis for development of alternative medical healthcare services in developing countries. J R Soc Health 113(4):190–194

    Article  PubMed  CAS  Google Scholar 

  • Pandey JK, Singh DK (2009) Molluscicidal activity of Piper cubeba Linn., Piper longum Linn. and Tribulus terrestris Linn. and their combinations against snail Indoplanorbis exustus Desh. Indian J Exp Biol 47(8):643–648

    PubMed  Google Scholar 

  • Phillipson JD, O’Neill MJ, Wright CW, Bray DH, Warhurst DC (1987) Plants as sources of antimalarial and amoebicidal compounds. In: Medicinal and poisonous plants of the tropics. Proceedings of Symposium of the 14th International Botanic Congress, Berlin, pp 5–35

  • Prasanna R, Harish CC, Pichai R, Sakthisekaran D, Gunasekaran P (2009) Anti-cancer effect of Cassia auriculata leaf extract in vitro through cell cycle arrest and induction of apoptosis in human breast and larynx cancer cell lines. Cell Biol Int 33(2):127–134

    Article  PubMed  CAS  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008) Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet. Parasitol Res 102:981–988

    Article  PubMed  Google Scholar 

  • Rakotomanga M, Razakantoanina V, Raynaud S, Loiseau PM, Hocquemiller R, Jaureguiberry G (2004) Antiplasmodial activity of acetogenins and inhibitory effect on Plasmodium falciparum adenylate translocase. J Chemother 16:350–356

    PubMed  CAS  Google Scholar 

  • Ramazani A, Sardari S, Zakeri S, Vaziri B (2010a) In vitro antiplasmodial and phytochemical study of five Artemisia species from Iran and in vivo activity of two species. Parasitol Res 107(3):593–599

    Article  PubMed  Google Scholar 

  • Ramazani A, Zakeri S, Sardari S, Khodakarim N, Djadidt ND (2010b) In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense. Malar J 9:124

    Article  PubMed  Google Scholar 

  • Ravikumar S, Jacob Inbaneson S, Suganthi P, Venkatesan M, Ramu A (2010) Mangrove plants as a source of lead compounds for the development of new antiplasmodial drugs from South East coast of India. Parasitol Res. doi:10.1007/s00436-010-2184-4

    Google Scholar 

  • Ravikumar S, Nazar S, Nuralshiefa A, Abideen S (2005) Antibacterial activity of traditional therapeutic coastal medicinal plants against some pathogens. J Environ Biol 26(2 Suppl):383–386

    PubMed  CAS  Google Scholar 

  • Samoylenko V, Jacob MR, Khan SI, Zhao J, Tekwani BL, Midiwo JO, Walker LA, Muhammad I (2009) Antimicrobial, antiparasitic and cytotoxic spermine alkaloids from Albizia schimperiana. Nat Prod Commun 4(6):791–796

    PubMed  CAS  Google Scholar 

  • Samy RP, Thwin MM, Gopalakrishnakone P, Ignacimuthu S (2007) Ethnobotanical survey of folk plants for the treatment of snakebites in southern part of Tamilnadu, India. J Ethnopharmacol 115(2):302–312

    Article  PubMed  Google Scholar 

  • Sastri BN (1969) The wealth of India Raw Materials, Information and Publication Directorate. CSIR, New Delhi, vol III

  • Satdive RK, Abhilash P, Fulzele DP (2003) Antimicrobial activity of Gymnema sylvestre leaf extract. Fitoterapia 74:699–701

    Article  PubMed  CAS  Google Scholar 

  • Schmid GH, Rembold H, Ahmed AAI, Breuer AM (1998) Effect of Melia azedarach fruit extract on juvenile hormone titer and protein content in the hemolymph of two species of noctuid lepidopteran larvae (Insecta: Lepidoptera: Noctuidae). Phytoparasitica 26:283–291

    Article  Google Scholar 

  • Sebisubi FM, Odyek O, Anokbonggo WW, Ogwal-Okeng J, Carcache-Blanco EJ, Ma C, Orjala J, Tan GT (2010) Antimalarial activity of Aspilia pruliseta, a medicinal plant from Uganda. Planta Med 76(16):1870–1873

    Article  PubMed  CAS  Google Scholar 

  • Shunying Z, Yang Y, Huaidong Y, Yue Y, Guolin Z (2005) Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. J Ethnopharmacol 96:151–158

    Article  PubMed  Google Scholar 

  • Silva TM, Batista MM, Camara CA, Agra MF (2005) Molluscicidal activity of some Brazilian Solanum spp. (Solanaceae) against Biomphalaria glabrata. Ann Trop Med Parasitol 99(4):419–425

    Article  PubMed  CAS  Google Scholar 

  • Singh SP, Raghavendra K, Singh RK, Mohanty SS, Dash AP (2008) Evaluation of Tribulus terrestris Linn (Zygophyllaceae) acetone extract for larvicidal and repellence activity against mosquito vectors. J Commun Dis 40(4):255–261

    PubMed  CAS  Google Scholar 

  • Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M (2004) Simple and inexpensive fluorescence-based technique for high throughput antimalarial drug screening. Antimicrob Agents Chemother 48:1803–1806

    Article  PubMed  CAS  Google Scholar 

  • Souza MMC, Bevilaqua CML, Morais SM, Costa CTC, Silva ARA, Filho RB (2008) Anthelmintic acetogenin from Annona squamosa L. seeds. Anais da Academia Brasileira de Cieˆncias 802:271–277

    Article  Google Scholar 

  • Stanberry LR, Bernstein DI, Myers MG (1986) Evaluation of the herpes simplex virus antiviral activity of pyrethrins. Antiviral Res 6(2):95–102

    Article  PubMed  CAS  Google Scholar 

  • Tchoumbougnang F, Zollo PH, Dagne E, Mekonnen Y (2005) In vivo antimalarial activity of essential oils from Cymbopogon citratus and Ocimum gratissimum on mice infected with Plasmodium berghei. Planta Med 71(1):20–23

    Article  PubMed  CAS  Google Scholar 

  • Tona L, Cimanga RK, Mesia K, Musuamba CT, De Bruyne T, Apers S, Hernans N, Miert SV, Pieters L, Totté J, Vlietinck AJ (2004) In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in Democratic Republic of Congo. J Ethnopharmacol 93:27–32

    Article  PubMed  CAS  Google Scholar 

  • Tona L, Mesia K, Ngimbi NP, Chrimwami B, Okond'ahoka, Cimanga K, de Bruyne T, Apers S, Hermans N, Totte J, Pieters L, Vlietinck AJ (2001) In-vivo antimalarial activity of Cassia occidentalis, Morinda morindoides and Phyllanthus niruri. Ann Trop Med Parasitol 95(1):47–57

    Article  PubMed  CAS  Google Scholar 

  • Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675

    Article  PubMed  CAS  Google Scholar 

  • Traoré M, Diallo A, Nikièma JB, Tinto H, Dakuyo ZP, Ouédraogo JB, Guissou IP, Guiguemdé TR (2008) In vitro and in vivo antiplasmodial activity of “saye”, an herbal remedy used in Burkina Faso traditional medicine. Phytother Res 22(4):550–551

    Article  PubMed  Google Scholar 

  • Urzua A, Mendoza L (2003) Antibacterial activity of fresh flowerheads of Chrysanthemum coronarium. Fitoterapia 74:606–608

    Article  PubMed  CAS  Google Scholar 

  • Valadeau C, Pabon A, Deharo E, Albán-Castillo J, Estevez Y, Lores FA, Rojas R, Gamboa D, Sauvain M, Castillo D, Bourdy G (2009) Medicinal plants from the Yanesha (Peru): evaluation of the leishmanicidal and antimalarial activity of selected extracts. J Ethnopharmacol 123(3):413–422

    Article  PubMed  Google Scholar 

  • WHO (2008) World malaria report. October 2009, www.who.int/malaria/wmr2008

  • Zeng L, Ye Q, Oberlies NH, Shi G, Cu ZM, He K (1996) Recent advances in annonaceous acetogenins. Nat Prod Rep 13:275–306

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Wu Y, Lei Y, Ruan H, Voelter W, Jung A, Schick M (1996) Effect of alcohol extracts of Chrysanthemum morifolium on Plasmodium falciparum in vitro. J Tongji Med Univ 16(4):203–204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to C. Abdul Hakeem of the College Management; Dr. S. Mohammed Yousuff, Principal; and Dr. K. Abdul Subhan, HOD of Zoology Department for providing the facilities to carry out this work. NKK, DM and DS thank MR4 who generously provided the chloroquine-resistant INDO strain used in the study. Thanks to X Su who deposited this strain with MR4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Abdul Rahuman.

Additional information

Chinnaperumal Kamaraj and Naveen Kumar Kaushik contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamaraj, C., Kaushik, N.K., Mohanakrishnan, D. et al. Antiplasmodial potential of medicinal plant extracts from Malaiyur and Javadhu hills of South India. Parasitol Res 111, 703–715 (2012). https://doi.org/10.1007/s00436-011-2457-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2457-6

Keywords

Navigation