Skip to main content

Advertisement

Log in

Municipal wastewater treatment plants as removal systems and environmental sources of human-virulent microsporidian spores

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Municipal wastewater treatment plants play a vital role in reducing the microbial load of sewage before the end-products are discharged to surface waters (final effluent) or local environments (biosolids). This study was to investigate the presence of human-virulent microsporidian spores (Enterocytozoon bieneusi, Encephalitozoon intestinalis, and Encephalitozoon hellem) and enterococci during treatment processes at four Irish municipal secondary wastewater treatment plants (plants A–D). Microsporidian abundance was significantly related to seasonal increase in water temperature. Plant A had the least efficient removal of E. intestinalis spores (32%) in wastewater, with almost 100% removal at other plants both in April and July. Some negative removal efficiencies were obtained for E. bieneusi (at plants C and D, −100%) and for E. hellem (at plants A and D, −90% and −50%). In addition, a positive correlation was found between the levels of enterococci and E. bieneusi in July (r s = 0.72, P < 0.05). In terms of the dewatered biosolids, a median concentration as high as 32,000 spores/Kg of E. hellem was observed at plant D in July. Plant C sewage sludge contained the lowest microsporidian loadings (E. bieneusi; 450 spores/L and 1,000 spores/L in April and July, respectively). This study highlights the seasonal variation in concentrations of microsporidian spores in the incoming sewage. Spores in final effluents and dewatered biosolids can be the source of human-virulent microsporidian contamination to the local environment. This emphasizes a considerably high public health risk when sewage-derived biosolids are spread during summer months. This study also suggested enterococci as a potential indicator of the presence of microsporidian spores in wastewater, especially for E. bieneusi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ash LR, Orihel TC (1987) Parasites: a guide to laboratory procedures and identification. ASCP, Chicago

    Google Scholar 

  • Bontoux L (1998) The regulatory status of wastewater reuse in the European Union. In: Asano T (ed) Wastewater reclamation and reuse. Technomic, Lancaster, pp 1463–1476

    Google Scholar 

  • Caccio SM, De Giacomo M, Aulicino FA, Pozio E (2003) Giardia cysts in wastewater treatment plants in Italy. Appl Environ Microbiol 69:3393–3398

    Article  PubMed  CAS  Google Scholar 

  • Cheng H-WA, Lucy FE, Graczyk TK, Broaders MA, Tamang L, Connolly M (2009) Fate of Cryptosporidium parvum and Cryptosporidium hominis oocysts and Giardia duodenalis cysts during secondary wastewater treatments. Parasitol Res 105(3):689–696

    Article  PubMed  Google Scholar 

  • Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation, 2nd edn. Wiley, Plymouth Marine Laboratory, UK

    Google Scholar 

  • Cotte L, Rabodonirina M, Chapuis F, Bailly F, Brissuel F, Raynal C, Gelas P, Persat F, Piens M-A, Trepo C (1999) Waterborne outbreak of intestinal microsporidiosis in persons with and without human immunodeficiency virus infection. J Infect Dis 180:2003–2008

    Article  PubMed  CAS  Google Scholar 

  • Council of the European Community (CEC) (1991) Council directive 91/271/EEC of 21 May 1991 concerning urban wastewater treatment. Off J Eur Union L 135:40–52

    Google Scholar 

  • Council of the European Community (CEC) (2006) Directive 2006/7/EC of the European parliament and of the council of 15 February 2006 concerning the management of bathing water quality and repealing directive 76/160/EEC. Off J Eur Union L 64:37–51

    Google Scholar 

  • Dorsch MR, Veal DA (2001) Oligonucleotide probes for specific detection of Giardia lamblia cysts by fluorescent in situ hybridization. J Appl Microbiol 90:836–842

    Article  PubMed  CAS  Google Scholar 

  • Dengjel B, Zahler M, Hermanns W, Heinritzi K, Spillmann T, Thomschke A, Loscher T, Gothe R, Rinder H (2001) Zoonotic potential of Enterocytozoon bieneusi. J Clin Microbiol 39:4495–4499

    Article  PubMed  CAS  Google Scholar 

  • Didier ES, Stovall ME, Green LC, Brindley PJ, Sestak K, Didier PJ (2004) Epidemiology of microsporidiosis: sources and modes of transmission. Vet Parasitol 126:145–166

    Article  PubMed  CAS  Google Scholar 

  • Didier ES (2005) Microsporidiosis: an emerging and opportunistic infection in humans and animals. Acta Trop 94:61–76

    Article  PubMed  CAS  Google Scholar 

  • Dowd SE, Gerba CP, Pepper IL (1998) Confirmation of the human-pathogenic microsporidia Enterocytozoon bieneusi, Encephalitozoon intestinalis, and Vittaforma corneae in water. Appl Environ Microbiol 64:3332–3335

    PubMed  CAS  Google Scholar 

  • Enriquez FJ, Taren D, Cruz-Lopez A, Muramoto M, Palting JD, Cruz P (1998) Prevalence of intestinal encephalitozoonosis in Mexico. Clin Infect Dis 26:1227–1229

    Article  PubMed  CAS  Google Scholar 

  • Fournier S, Liquory O, Santillana-Hayat M, Guillot E, Sarfari C, Dumoutier N, Molina J, Derouin F (2000) Detection of microsporidia in surface water: a one-year follow-up study. FEMS Immunol Med Microbiol 29:95–100

    Article  PubMed  CAS  Google Scholar 

  • Gale P (2005) Land application of treated sewage sludge: qualifying pathogen risk from consumption of crop. J Appl Microbiol 98:380–396

    Article  PubMed  CAS  Google Scholar 

  • Garcia LS (2002) Laboratory identification of the microsporidia. J Clin Microbiol 40:1892–1901

    Article  PubMed  Google Scholar 

  • Graczyk TK, Conn DB, Lucy F, Minchin D, Tamang L, Moura LNS, DaSilva AJ (2004) Human waterborne parasites in zebra mussels (Dreissena polymorpha) from the Shannon River drainage, Ireland. Parasitol Res 93:389–391

    Article  Google Scholar 

  • Graczyk TK, Lucy FE, Tamang L, Miraflor A (2007a) Human enteropathogen load in activated sewage sludge and corresponding sewage sludge-end products. Appl Environ Microbiol 73:2013–2015

    Article  PubMed  CAS  Google Scholar 

  • Graczyk TK, Kacprzak M, Neczaj E, Tamang L, Graczyk H, Lucy FE, Girouard AS (2007b) Human-virulent microsporidian spores in solid waste landfill leachate and sewage sludge, and effects of sanitization treatments on their inactivation. Parasitol Res 101:569–575

    Article  PubMed  Google Scholar 

  • Graczyk TK, Sunderland D, Tamang L, Shields TM, Lucy FE, Breysee PN (2007c) Quantitative evaluation of the impact of bather density on levels of human-virulent microsporidian spores in recreational water. Appl Environ Microbiol 73:4095–4099

    Article  PubMed  CAS  Google Scholar 

  • Graczyk TK, Majewska AC, Schwab KJ (2007d) The role of birds in dissemination of human waterborne enteropathogens. Trend Parasitol 24(2):55–59

    Article  Google Scholar 

  • Graczyk TK, Lucy FE, Tamang L, Mashinsky Y, Broaders MA, Connolly M, Cheng H-WA (2009) Propagation of human enteropathogens in constructed horizontal wetlands used for tertiary wastewater treatment. Appl Environ Microbiol 75:4531–4538

    Article  PubMed  CAS  Google Scholar 

  • Irish Environmental Protection Agency (IEPA) (2007) Urban waste water discharges in Ireland. A report for the years of 2004 and 2005. Environmental Protection Agency, Wexford

    Google Scholar 

  • John DE, Nwachuku N, Pepper IL, Gerba CP (2003) Development and optimization of a quantitative cell culture infectivity assay for the microsporidium Encephalitozoon intestinalis and application to ultraviolet light inactivation. J Microbiol Methods 52:183–196

    Article  PubMed  Google Scholar 

  • Johnson CH, Marshall MM, DeMaria LA, Moffet JM, Korich DG (2003) Chlorine inactivation of spores of Encephalitozoon spp. Appl Environ Microbiol 69:1325–1326

    Article  PubMed  CAS  Google Scholar 

  • Li X, Palmer R, Trout JM, Fayer R (2003) Infectivity of microsporidia spores stored in water at environmental temperature. J Parasitol 89:185–188

    Article  PubMed  CAS  Google Scholar 

  • Lucy FE, Graczyk TK, Tamang L, Miraflor A, Minchin D (2008) Biomonitoring of surface and coastal water for Cryptosporidium, Giardia and human-virulent microsporidia using molluscan shellfish. Parasitol Res 103:1369–1375

    Article  PubMed  Google Scholar 

  • Mathis A, Weber R, Deplazes P (2005) Zoonotic potential of microsporidia. Clin Microbiol Rev 18:423–445

    Article  PubMed  CAS  Google Scholar 

  • Nkinin SW, Asonganyi T, Didier ES, Kanoshiro ES (2007) Microsporidian infection is prevalent in healthy people in Cameroon. J Clin Microbiol 45:2841–2846

    Article  PubMed  Google Scholar 

  • Rimhanen-Finne R, Vourinen A, Marmo S, Malmbreg S, Hanninen ML (2004) Comparative analysis of Cryptosporidium and Giardia and indicator bacteria during sewage sludge hygienization in various composting processes. Lett Appl Microbiol 38:301–305

    Article  PubMed  CAS  Google Scholar 

  • Robertson LJ, Hermansen L, Gjerde BK (2006) Occurrence of Cryptosporidium oocysts and Giardia cysts in sewage in Norway. Appl Environ Microbiol 72:5297–5303

    Article  PubMed  CAS  Google Scholar 

  • Sak B, Kvac M, Hanzlikova D, Cama V (2008) First report of Enterocytozoon bieneusi infection on a pig farm in the Czech Republic. Vet Parasitol 153:220–224

    Article  PubMed  Google Scholar 

  • Slifko TR, Smith HV, Rose JB (2000) Emerging parasite zoonoses associated with water and food. Int J Parasitol 30:1379–1393

    Article  PubMed  CAS  Google Scholar 

  • Slodkowicz-Kowalska A, Graczyk TK, Tamang L, Jedrzejewski S, Nowosad A, Zduniak P, Solarczyk P, Girourd AS, Majewska AC (2006) Microsporidian species known to infect humans are present in aquatic birds: implications for transmission via water? Appl Environ Microbiol 72:4540–4544

    Article  PubMed  CAS  Google Scholar 

  • Sparfel JM, Sarfati C, Liquory O, Caroff B, Dumoutier N, Gueglio B, Billaud E, Raffi F, Molina LM, Miegeville M, Derouin F (1997) Detection of microsporidia and identification of Enterocytozoon bieneusi in surface water by filtration followed by specific PCR. J Eukaryot Microbiol 44:78S

    Article  PubMed  CAS  Google Scholar 

  • Sulaiman IM, Fayer R, Lal AA, Trout JM, Schaefer FW III, Xiao L (2003) Molecular characterization of microsporidia indicates that wild mammals harbour host-adapted Enterocytozoon spp as well as human-pathogenic Enterocytozoon bieneusi. Appl Environ Microbiol 69:4495–4501

    Article  PubMed  CAS  Google Scholar 

  • Thurston-Enriquez J, Watt AP, Dowd SE, Enriquez R, Pepper IL, Gerba CP (2002) Detection of protozoan parasites and microsporidia in irrigation waters used for crop production. J Food Prot 65:378–382

    PubMed  Google Scholar 

  • Ulrich H, Klaus D, Irmgard F, Annette H, Juan LP, Regine S (2005) Microbiological investigations for sanitary assessment of wastewater treated in constructed wetlands. Water Res 39:4849–4858

    Article  PubMed  CAS  Google Scholar 

  • US Environmental Protection Agency (US EPA) (1999) Control of pathogens and vector attraction in sewage sludge. US EPA Environmental Regulations and Technology. Office of Research and Development, EPA/623/R-92/013, Washington DC

  • Vavra J, Larsson R (1999) Structure of the microsporidia. In: Wittner M, Weiss L (eds) The microsporidia and microsporidiosis. American Society for Microbiology, Washington, pp 7–84

    Google Scholar 

  • Veronica A (2008) Proper sanitization of sewage sludge: a critical issue of a sustainable society. Appl Environ Microbiol 74:5267–5275

    Article  Google Scholar 

  • Weber R, Bryan RT, Schwartz DA, Owen RL (1994) Human microsporidial infections. Clin Microbiol Rev 7:426–561

    PubMed  CAS  Google Scholar 

  • Wheeler AI, Hartel PG, Godfrey DG, Hill JI, Segars WI (2002) Potential of Enterococcus faecalis as a human faecal indicator for microbial source tracking. J Environ Qual 31:1286–1293

    Article  PubMed  CAS  Google Scholar 

  • Wichro E, Hoelzl D, Krause R, Bertha G, Reinthaler F, Weinisch C (2005) Microsporidiosis in travel-associated chronic diarrhea in immune-competent patients. Am J Trop Med Hyg 73:285–287

    PubMed  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

The study was supported by the Irish EPA STRIVE PhD grant 2007-PhD-EH-3, Fulbright Senior Specialist Fellowship (grant no. 2225 Graczyk), Johns Hopkins Center in Urban Environmental Health (grant no. P30 ES03819), School of Science, Institute of Technology, Sligo, Ireland, and the US Environmental Protection Agency Science to Achieve Results (STAR) Program (grant no. RD83300201). We would like to acknowledge Irish local authorities for providing access to wastewater treatment plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances E. Lucy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, HW.A., Lucy, F.E., Graczyk, T.K. et al. Municipal wastewater treatment plants as removal systems and environmental sources of human-virulent microsporidian spores. Parasitol Res 109, 595–603 (2011). https://doi.org/10.1007/s00436-011-2291-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2291-x

Keywords

Navigation