Skip to main content

Advertisement

Log in

Proteins of the Plasmodium falciparum two transmembrane Maurer’s cleft protein family, PfMC-2TM, and the 130 kDa Maurer’s cleft protein define different domains of the infected erythrocyte intramembranous network

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Plasmodium falciparum Maurer’s clefts participate in the transport of macromolecules within the cytoplasm, including the transport of virulence proteins to the erythrocyte membrane surface. We identified a family of genes PfMC-2TM encoding transmembrane proteins located within the intramembranous network of the infected erythrocyte using monoclonal antibody SP1C1. The distribution of the PfMC-2TM protein family within domains of the network was investigated by colocalization and confocal microscopy studies using monoclonal antibody SP1C1 specific for PFMC-2TM and monoclonal antibody SP1A6 specific for the130 kDa Maurer’s cleft protein. Peptide-specific antibodies were prepared against six peptides from different domains of PfMC-2TM and used with the Mabs, as well as known antibodies specific to Maurer’s clefts proteins (ring-expressed protein and membrane-associated histidine-rich protein 1), the erythrocyte membrane protein 1 (PfEMP-1), and serine-rich antigen in colocalization studies. We show that PfMC-2TM is located in the Maurer’s clefts throughout the intracellular blood stage, and immunoelectron microscopy shows domains of PfMC-2TM localized in the parasitophorous vacuole and parasitophorous vacuole membrane. The distribution of the 130 kDa Maurer’s cleft protein changes from within the parasite to the clefts during intracellular development as the parasite matures from young trophozoite to segmented schizont.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adisa A, Rug M, Foley M, Tilley L (2002) Characterization of a delta-COP homologue in the malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol 123:11–21

    Article  PubMed  CAS  Google Scholar 

  • Adisa A, Frankland S, Rug M, Jackson K, Maier AG, Walsh P, Lithgow T, Klonis N, Gilson PR, Cowman AF, Tilley L (2007) Re-assessing the locations of components of the classical vesicle-mediated trafficking machinery in transfected Plasmodium falciparum. Int J for Parasitol 37:1127–114

    Article  CAS  Google Scholar 

  • Charpian S, Przyborski JM (2008) Protein transport across the parasitophorous vacuole of Plasmodium falciparum: into the great wide open. Traffic 9:157–165

    PubMed  CAS  Google Scholar 

  • Cooke BM, Buckingham DW, Glenister FK, Fernandez KM, Bannister LH, Marti M, Mohandas N, Coppel R (2006) A Maurer’s cleft-associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells. J Cell Biol 172:899–908

    Article  PubMed  CAS  Google Scholar 

  • Elmendorf HG, Haldar K (1993) Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implications for organization of the Golgi. EMBO J 12:4763–477

    PubMed  CAS  Google Scholar 

  • Etzion Z, Perkins ME (1989) Localization of a parasite encoded protein to Erythrocyte cytoplasmic vesicles of Plasmodium falciparum-infected cells. Eur J Cell Biol 48:174–179

    PubMed  CAS  Google Scholar 

  • Flick K, Chen Q (2004) var genes, PfEMP1 and the human host. Mol Biochem Parasitol 134:3–9

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peters J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  PubMed  CAS  Google Scholar 

  • Haeggström M, Kironde F, Berzins K, Chen Q, Wahlgren M, Fernandez V (2004) Common trafficking pathway for variant antigens destined for the surface of the Plasmodium falciparum-infected erythrocyte. Mol Biochem Parasitol 133:1–14

    Article  PubMed  CAS  Google Scholar 

  • Haldar K (1998) Intracellular trafficking in Plasmodium-infected erythrocyte. Curr Opin Microbiol 1:466–471

    Article  PubMed  CAS  Google Scholar 

  • Haldar K, Hiller NL, van Ooij C, Bhattacharjee S (2005) Plasmodium parasite proteins and the infected erythrocyte. Trends in Parasitol 21:402–403

    Article  CAS  Google Scholar 

  • Hanssen E, Sougrat R, Frankland S, Deed S, Klonis N, Lippincott-Schwartz J, Tilley L (2008a) Electron tomography of the Maurer’s cleft organelles of Plasmodium falciparum-infected erythrocytes reveals novel structural features. Mol Microbiol 67:703–718

    PubMed  CAS  Google Scholar 

  • Hanssen E, Hawthorne P, Dixon MWA, Trenholme KR, McMillan PJ, Spielmann T, Gardiner D, Tilley L (2008b) Targeted mutagenesis of the ring-exported protein-1 of Plasmodium falciparum disrupts the architecture of Maurer’s clefts organelles. Mol Microbiol. doi:10.1111/j.1365-2958.2008 06329.x

  • Hawthorne PL, Trenholme KR, Skinner-Adams TS, Speilman T, Fisher K, Dixon MWA, Ortega MR, Anderson KL, Kemp DJ, Gardiner DL (2004) A novel Plasmodium falciparum ring stage protein, REX is located in Maurer’s clefts. Mol Biochem Parasitol 136:181–189

    Article  PubMed  CAS  Google Scholar 

  • Horrocks P, Muhia D (2005) Pexel/VST: a protein-export motif in erythrocytes infected with malaria parasites. Trends Parasitol 21:396–399

    Article  PubMed  CAS  Google Scholar 

  • Hui GS, Siddiqui WA (1988) Characterization of a Plasmodium falciparum polypeptide associated with membrane vesicles in the infected erythrocytes. Mol Biochem Parasitol 29:283–293

    Article  PubMed  CAS  Google Scholar 

  • Joannin N, Abhiman S, Sonnhammer EL, Wahlgren M (2008) Sub-grouping and sub- functionalization of the RIFIN multi-copy protein family. BMC Genomics 9:19

    Article  PubMed  CAS  Google Scholar 

  • Joshi MB, Gam AA, Boykins RA, Kumar S, Sacci J, Hoffman SL, Nakhasi HL, Kenney RT (2001) Immunogenicity of well-characterized synthetic Plasmodium falciparum multiple antigen peptide conjugates. Infect Immun 69:4884–4890

    Article  PubMed  CAS  Google Scholar 

  • Kaviratne M, Khan SM, Jarra W, Preiser PR (2002) Small variant STEVOR antigen is uniquely located within Maurer’s clefts in Plasmodium falciparum-infected red blood cells. Eukaryotic Cell 6:926–935

    Article  CAS  Google Scholar 

  • Khattab A, Klinkert MQ (2006) Maurer’s clefts-restricted localization, orientation and export of a Plasmodium falciparum RIFIN. Traffic 7:1654–1665

    Article  PubMed  CAS  Google Scholar 

  • Khattab A, Bonow I, Schreiber N, Petter M, Schmetz C, Klinkert MQ (2008) Plasmodium falciparum variant STEVOR antigens are expressed in merozoites and possibly associated with erythrocyte invasion. Malaria Journal 7:137 doi:10.1186/1475-2875-7-137

    Article  PubMed  Google Scholar 

  • Kirchgatter K, Del Portillo HA (2005) Clinical and molecular aspects of severe malaria. An Acad Bras Cienc 77:455–475

    PubMed  CAS  Google Scholar 

  • Knapp B, Hundt E, Nau U, Kupper HA (1989) Molecular cloning, genomic structure and localization in a blood stage antigen of Plasmodium falciparum characterized by a serine stretch. Mol Biochem Parasitol 32:73–84

    Article  PubMed  CAS  Google Scholar 

  • Kriek N, Tilley L, Horrocks P, Pinches R, Elford BC, Ferguson DJ, Lingelbach K, Newbold CI (2003) Characterization of the pathway for transport of the cytoadhearence-mediated protein, PfEMP1, to the host cell surface in malaria parasite-infected erythrocytes. Mol Microbiol 50:1215–1227

    Article  PubMed  CAS  Google Scholar 

  • Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J. Parasitol 65:418–420

    Article  PubMed  CAS  Google Scholar 

  • Lanzer M, Wickert H, Krohne G, Vincensini L, Braun Breton CB (2006) Maurer’s clefts: a novel multi-functional organelle in the cytoplasm of Plasmodium falciparum-infected erythrocytes. Inter J Parasitol 36:23–36

    Article  CAS  Google Scholar 

  • Lavazec C, Sanyal S, Templeton TJ (2006) Hypervariability within the Rifin, Stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Nucl Acids Res 34:6696–6707

    Article  PubMed  CAS  Google Scholar 

  • Lavazec C, Sanyal S, Templeton TJ (2007) Expression switching in the stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Mol Microbiol 64:1621–1634

    Article  PubMed  CAS  Google Scholar 

  • Li WL, Das A, Song JY, Crary JL, Haldar K (1991) Stage-specific expression of plasmodial proteins containing an antigenic marker of the intraerythrocytic cisternae. Mol Biochem Parasitol 49:157–168

    Article  PubMed  CAS  Google Scholar 

  • Lingelbach KR (1993) Plasmodium falciparum: a molecular view of protein transport from the parasite into the host erythrocyte. Exp Parasitol 76:318–327

    Article  PubMed  CAS  Google Scholar 

  • Lingelbach K, Przyborski JM (2006) The long and winding road: protein trafficking mechanisms in the Plasmodium infected erythrocyte. Mol Biochem Parasitol 147:1–8

    Article  PubMed  CAS  Google Scholar 

  • McRobert L, Preiser P, Sharp S, Jarra W, Kaviratne M, Taylor MC, Renia L, Sutherland CJ (2004) Distinct trafficking and localization STEVOR proteins in three stages of the Plasmodium falciparum life cycle. Infec Immun 72:6597–6602

    Article  CAS  Google Scholar 

  • Pasvol G, Wilson RJ, Smalley ME, Brown J (1978) Separation of viable schizont infected red blood cells of Plasmodium falciparum from human blood. Ann Trop Med Parasitol 72:87–88

    PubMed  CAS  Google Scholar 

  • Petter M, Haeggstron M, Khattab A, Fernandez V, Klinkert MQ, Wahlgren MC (2007) Variant proteins of the Plasmodium falciparum RIFIN family show distinct localization and developmental expression patterns. Mol Biochem Parasitol 156:51–61

    Article  PubMed  CAS  Google Scholar 

  • Przyborski JM, Lanzer M (2005) Protein transport and trafficking in Plasmodium falciparum-infected erythrocytes. Parasitol 130:373–388

    Article  CAS  Google Scholar 

  • Przyborski JM, Wickert H, Krohne G, Lanzer M (2003) Maurer’s cleft—a novel secretory organelle? Mol Biochem Parasitol 132:17–26

    Article  PubMed  CAS  Google Scholar 

  • Przyborski JM, Miller SK, Pfahler JM, Henrich PP, Rohrbach P, Crabb BS, Lanzer M (2005) Trafficking of STEVOR to the Maurer’s clefts in Plasmodium falciparum-infected erythrocytes. EMBO J 24:2306–2317

    Article  PubMed  CAS  Google Scholar 

  • Romisch K (2005) Protein targeting from malaria parasites to host erythrocytes. Traffic 6:706–709

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Sam-Yellowe TY, Shio H, Perkins ME (1988) Secretion of Plasmodium falciparum rhoptry protein into the plasma membrane of host erythrocytes. J Cell Biol 106:1507–1513

    Article  PubMed  CAS  Google Scholar 

  • Sam-Yellowe TY, Fujioka H, Aikawa M, Messineo, DG (1995) Plasmodium falciparum rhoptry proteins of 140/130/110 kd (Rhop-H) are located in an electron lucent compartment in the neck of the rhoptries. J Euk Microbiol 42:224–231

    Article  PubMed  CAS  Google Scholar 

  • Sam-Yellowe TY, Fujioka H, Aikawa M, Messineo DG, Leash AM, Hall T, Drazba JA, Ndengele MM (2000) Molecular organization and cross-linking analysis of the Plasmodium falciparum erythrocyte binding proteins Rhop-H and SERA. J Protozool Res 10:128–154

    Google Scholar 

  • Sam-Yellowe TY, Fujioka H, Aikawa M, Hall T, Drazba JA (2001) A Plasmodium falciparum protein located in Maurer’s clefts underneath knobs and protein localization in association with Rhop-3 and SERA in the intracellular network of infected erythrocyte. Parasitol Res 87:173–185

    Article  PubMed  CAS  Google Scholar 

  • Sam-Yellowe TY, Florens L, Johnson JR, Wang T, Drazba JA, Le Roch KG, Zhou Y, Batalov S, Carucci DJ, Winzeler EA, Yates JR III (2004) A Plasmodium gene family encoding Maurer’s cleft membrane proteins: structural properties and expression profiling. Genome Res 14:1052–1059

    Article  PubMed  CAS  Google Scholar 

  • Speilmann T, Hawthorne PL, Dixon MW, Hanneman M, Klotz K, Kemp DJ, Klonis N, Tilley L, Trenholme KR, Gardiner DL (2006) A cluster of ring stage specific genes linked to a locus implicated in cytoadherence in Plasmodium falciparum codes for PEXEL-negative and PEXEL-positive proteins exported into the host cell. Mol Biol Cell 17:3613–3624

    Article  CAS  Google Scholar 

  • Spycher C, Klonis N, Spielmann T, Kump E, Steiger S, Tilley L, Beck HP (2003) MAHRP-1, a novel Plasmodium falciparum histidine-rich protein, binds ferriprotoporphyrin IX and localize to the Maurer’s cleft. J Biol Chem 278:35373–35383

    Article  PubMed  CAS  Google Scholar 

  • Spycher C, Rug M, Klonis N, Ferfuson DJP, Cowman AF, Beck HP, Tilley L (2006) Genesis of and trafficking to the Maurer’s clefts of Plasmodium falciparum-infected erythrocytes. Mol Cell Biol 26:4074–4085

    Article  PubMed  CAS  Google Scholar 

  • Spycher C, Rug M, Pachlatko E, Hanssen E, Ferguson D, Cowman AF, Tilley L, Beck H (2008) The Maurer’s cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of Plasmodium-infected erythrocytes. Mol Microbiol 68:1300–1314

    Article  PubMed  CAS  Google Scholar 

  • Stanley HA, Langreth SG, Reese RT (1989) Plasmodium falciparum antigens associated with membrane structures in the host erythrocyte cytoplasm. Mol Biochem Parasitol 36:139–150

    Article  PubMed  CAS  Google Scholar 

  • Tam JP (1988) Synthetic peptide vaccine design: Synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci U S A 85:5409–5413

    Article  PubMed  CAS  Google Scholar 

  • Taraschi TF, Trelka D, Martinez S, Schneider T, O’Donnell ME (2001) Vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes. Int J Parasitol 31:1381–1391

    Article  PubMed  CAS  Google Scholar 

  • Taraschi TF, O’Donnell M, Martinez S, Schneider T, Trelka D, Fowler VM, Tilley L, Moriyama Y (2003) Generation of an erythrocyte vesicle transport system by Plasmodium falciparum malaria parasites. Blood 102:3420–3426

    Article  PubMed  CAS  Google Scholar 

  • Templeton TJ, Deitsch KW (2005) Targeting malaria parasite protein to the erythrocyte. Trends Parasitol 21:399–402

    Article  PubMed  CAS  Google Scholar 

  • Tilley L, McFadden G, Cowman A, Klonis N (2007) Illuminating Plasmodium falciparum-infected red blood cells. Trends Parasitol 23:268–277

    Article  PubMed  Google Scholar 

  • Tilley L, Sougrat R, Lithgow T, Hanssen E (2008) The twists and turns of Maurer’s cleft trafficking in P. falciparum-infected erythrocytes. Traffic 9:187–197

    PubMed  CAS  Google Scholar 

  • Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675

    Article  PubMed  CAS  Google Scholar 

  • Trager W, Rudzinska MA, Bradbury PC (1966) The fine structure of Plasmodium falciparum and its host erythrocytes in natural malarial infections in man. Bull World Health Organ 35:883–885

    PubMed  CAS  Google Scholar 

  • Vincensini L, Richert S, Blisnick T, Van Dorsselaer A, Leize-Wagner E, Rabilloud T, Braun Breton C (2005) Proteomic analysis identifies novel proteins of the Maurer’s clefts, a secretory compartment delivering Plasmodium falciparum proteins to the surface of its host cell. Mol & Cell Proteomics 4:582–593

    Article  CAS  Google Scholar 

  • Vincensini L, Fall G, Berry L, Blisnick T, Braun Breton C (2008) The Rhop–H complex is transferred to the host cell cytoplasm following red blood cell invasion by Plasmodium falciparum. Mol Biochem Parasitol 160:81–89

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Fujioka H, Drazba JA, Sam-Yellowe TY (2006) Rhop-3 protein conservation among Plasmodium species and induced protection against lethal P. yoelii and P. berghei challenge. Parasitol Res 99:238–252

    Article  PubMed  Google Scholar 

  • Wickert H, Krohne G (2007) The complex morphology of Maurer’s clefts: from discovery to three-dimensional reconstructions. Trends Parasitol 23:502–509

    Article  PubMed  Google Scholar 

  • Wickert H, Göttler W, Krohne G, Lanzer M (2004) Maurer’s cleft organization in the cytoplasm of Plasmodium falciparum-infected erythrocytes: new insights from three-dimensional reconstruction of serial ultrathin section. Eur J Cell Biol 83:567–582

    Article  PubMed  Google Scholar 

  • Wiser MF, Grab DJ, Lanners HN (1999) An alternate secretory pathway in Plasmodium: more questions than answers “Transport and trafficking in the malaria-infected erythrocyte” (Novartis Foundation Symposium 226). Wiley, Chichester, pp 199–214

    Google Scholar 

  • Yang J-C, Blanton RE, King CL, Fujioka H, Aikawa M, Sam-Yellowe TY (1996) Seroprevalence and specificity of human responses to the Plasmodium falciparum rhoptry protein Rhop-3 determined by using a C-terminal recombinant protein. Infect Immun 64:3584–3591

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Cleveland State University Established Full Time Research Development Award (EFFRD). We would also like to acknowledge Dr. Leann Tilley of the La Trobe University, Dr. Don Gardiner of Queensland Institute of Medical Research and Dr. Hans Peter-Beck of the Swiss Tropical Institute, for generously supplying antibodies against PfEMP1, REX1 and MAHRP1, respectively. We thank Dr. David Fiddock of Albert Einstein College of Medicine for P. falciparum Dd2 strain. We thank the MR4 ATCC for antisera against ERD2. Research involving animals were performed with protocols approved by the IACUC of Cleveland State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobili Y. Sam-Yellowe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsarukyanova, I., Drazba, J.A., Fujioka, H. et al. Proteins of the Plasmodium falciparum two transmembrane Maurer’s cleft protein family, PfMC-2TM, and the 130 kDa Maurer’s cleft protein define different domains of the infected erythrocyte intramembranous network. Parasitol Res 104, 875–891 (2009). https://doi.org/10.1007/s00436-008-1270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-008-1270-3

Keywords

Navigation