Skip to main content
Log in

Molecular cloning and characterization of a novel immunoreactive ATPase/RNA helicase in human filarial parasite Brugia malayi

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

DEAD box proteins are putative RNA unwinding proteins found in organisms ranging from mammals to bacteria. We have identified a novel immunodominant cDNA clone, BmL3-helicase, encoding DEAD box RNA helicase by immunoscreening of a larval stage cDNA library of Brugia malayi. The cDNA sequence exhibited strong sequence homology to Caenorhabditis elegans and C. briggsae RNA helicase, a prototypic member of the DEAD (Asp-Glu-Ala-Asp) box protein family. The clone also showed similarity with RNA helicase of Wolbachia, an endosymbiotic bacterium of filarial parasite. It was overexpressed as ∼50 kDa His-tag fusion protein, and ATP hydrolysis assay of recombinant enzyme showed that either ATP or dATP was required for the unwinding activity, indicating BmL3-helicase as an ATP/dATP-dependent RNA helicase. The recombinant protein also demonstrated cross-seroreactivity with human bancroftian sera. The presence of BmL3-helicase in various life stages of B. malayi was confirmed by immunoblotting of parasite-life-cycle extracts with polyclonal sera against the BmL3-helicase, which showed high levels of expression in microfilaria, L3, and adult (both male and female) stages. In the absence of an effective macrofilaricidal agent and validated anti-filarial drug targets, RNA helicases could be utilized as a rational drug target for developing agents against the human filarial parasite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alasdair JN, Pauline C, Robin BG (2004) Molecular biology of reproduction and development in parasitic nematodes: progress and opportunities. Int J Parasitol 34:125–138

    Article  Google Scholar 

  • Andersen CB, Ballut L, Johansen JS, Chamieh H, Nielsen KH, Oliveira CL, Pedersen JS, Seraphin B, Le Hir H, Andersen GR (2006) Structure of the Exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313:1968–1972

    Article  PubMed  CAS  Google Scholar 

  • Bradford MA (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca+2-stimulated ATPase Activity. Anal. Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Coller J, Parker R, Song H (2005) Crystal structure and functional analysis of DEAD-box protein Dhh1p. RNA 1258–1270

  • Christine SR, Eugene S, James HM-Tt, Garson KL, Philip JR, Irwin DK, Fred EC (1993) Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci 90:3583–3587

    Article  Google Scholar 

  • David NF (2003) Helicases as antiviral drug targets. Drug News Perspect 16:355

    Article  Google Scholar 

  • Deborah LR, Karen LB (1993) glh-1, a germ-line putative RNA helicase from Caenorhabditis, has four zinc fingers. Proc Natl Acad Sci 90:9300–9304

    Article  Google Scholar 

  • Elodie G et al (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 317:1756

    Article  Google Scholar 

  • Feng J, Zhan B, Liu Y, Liu S, Williamson A, Goud G, Loukas A, Hotez P (2007) Molecular cloning and characterization of Ac-MTP-2, an astacin-like metalloprotease release. Mol Biochem Parasitol 152(2):132–138

    Article  PubMed  CAS  Google Scholar 

  • Frank GR, Tripp CA, Grieve RB (1996) Molecular cloning of a developmentally regulated protein isolated from excretory–secretory products of larval Dirofilaria immitis. Mol Biochem Parasitol 75:231–240

    Article  PubMed  CAS  Google Scholar 

  • Geldhof P, Visser A, Clark D, Saunders G, Britton C, Gilleard J, Berriman M, Knox D (2006) RNA interference in parasitic helminths: current situation, potential pitfalls and future prospects.1–11

  • Gnanasekar M, Rao KVN, He Y-X, Mishra PK, Nutman TB, Kaliraj P, Ramaswamy K (2004) Novel phage display-based subtractive screening to identify vaccine candidates of Brugia malayi. Infect Immun 72(8):4707–4715

    Article  PubMed  CAS  Google Scholar 

  • Gorbaleny AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure–function relationships. Curr Opin Struct Biol 3:419–429

    Article  Google Scholar 

  • Helmy H, Weil GJ, Faris R, Gad AM, Chandrashekar R, Ashour A, Ramzy RM (2000) Human antibody responses to Wuchereria bancrofti infective larvae. Parasite Immunol 22:89–96

    Article  PubMed  CAS  Google Scholar 

  • Hogbom M, Collins R, van den Berg S, Jenvert RM, Karlberg T, Kotenyova T, Flores A, Karlsson HGB, Holmberg SLH (2007) Crystal structure of conserved domains 1 and 2 of the human DEAD-box Helicase DDX3X in complex with the mononucleotide AMP. Mol Biol 372:150–159

    Article  Google Scholar 

  • Ibrahim MS, Richie TL, Scott AL (1992) Surface-associated antigens of Brugia malayi L2 and L3 parasites during vector-stage development. Mol Biochem Parasitol 52:97–110

    Article  PubMed  CAS  Google Scholar 

  • Ismail MM (1998) Efficacy of single dose combinations of albendazole, ivermectin and diethylcarbamazine for the treatment of bancroftian filariasis. Trans of the Royal Soc of Trop Med and Hyg 92:94–97

    Article  CAS  Google Scholar 

  • Jankowsky E, Bowers H (2006) Remodeling of ribonucleoprotein complexes with DExH/D RNA helicases. Nucleic Acids Res 34:4181–4188

    Article  PubMed  CAS  Google Scholar 

  • Kamath R S, Fraser A G, Dong Y, Poulin G, Durbin R, Gotta M, Kanapink A, Bot N L, Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R et al (2003) Systematic functional analysisof the Caenorhabditis elegans genome using RNAi. Nature 421

  • Kobayashi Y, Ishizaki S, Shimakura K, Nagashima Y, Shiomi K (2007) Molecular cloning and expression of two new allergens from Anisakis simplex. Parasitol Res 100(6):1233–1241

    Article  PubMed  Google Scholar 

  • Laemmli UK, Molbert E, Showe M, Kelenberger E (1970) Form-determining function of genes required for the assembly of the head of bacteriophage T4. J Mol Biol 49:99–113

    Article  PubMed  CAS  Google Scholar 

  • Merriweathera A, Guenzlerb V, Brennerb M, Unnasch TR (2001) Characterization and expression of enzymatically active recombinant filarial prolyl 4-hydroxylase. Mol Biochem Parasitol 116(2):185–197

    Article  Google Scholar 

  • Michael E (2000). The population dynamics and epidemiology of lymphatic Filariasis. Imperial College Press, London. 1: 41–82

  • Nisbet AJ, Halliday AM, Parker L, David SW, Kenyon F, Knox DP, Huntley JF (2008) Psoroptes ovis: identification of vaccine candidates by immunoscreening. Exp Parasitol 120(2):194–199

    Article  PubMed  CAS  Google Scholar 

  • Ottesen EA, Duke BO, Karam M, Behbehani K (1997) Strategies and tools for the control/ elimination of lymphatic filariasis. Bulletin of WHO 75:491–503

    CAS  Google Scholar 

  • Pugh GE, Nicol SM, Fuller-Pace FV (1999) Interaction of the Escherichia coli DEAD box protein DbpA with 23S ribosomal RNA. J Mol Biol 292:771–778

    Article  PubMed  CAS  Google Scholar 

  • Rao UR, Salinas G, Mehta K, Klei TR (2000) Identification and localization of glutathione-S-transferase as a potential target enzyme in Brugia species. Parasitol Res 86:908–915

    Article  PubMed  CAS  Google Scholar 

  • Rosa EN, Eun YS, Yuji K, Andrew S, Blackwell TK (2001) cgh-1, a conserved predicted RNA helicase required for gametogenesis and protection from physiological germline apoptosis in C. elegans. Development 128:3221–3232

    Google Scholar 

  • Sharma DC (2002) New goals set for filariasis elimination in India: news. The Lan Infec Dis 2:389

    Article  Google Scholar 

  • Shibuia A, Takamotob M, Shib Y, Komiyamaa A, Suganeb K (2001) Cloning and characterization of a novel gene encoding keratin-like protein from nematode Nippostrongylus brasiliensis. Biochimica et Biophysica Acta (BBA)—Gene Structure and Expression 1522(1):59–61

    Article  Google Scholar 

  • Singh U, Misra S, Murthy PK, Katiyar JC, Agarwal A, Sircar AR (1997) Immunoreactive molecules of Brugia malayi and their diagnostic potential. Serodiag Immunotherap Infect Dis 8:207–212

    Article  Google Scholar 

  • Story RM, Li H, Abelson JN (2001) Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc Natl Acad Sci 98:1465–1470

    Article  PubMed  CAS  Google Scholar 

  • Taylor MJ, Bandi C, Hoerauf AM, Lazdins J (2000) Wolbachia bacteria of filarial nematodes: a target for control? Science S0169-4758(00)01661-6

  • Tuteja R (2007) Helicases-feasible antimalarial drug target for Plasmodium falciparum. FEBS J 274:4699–4704

    Article  PubMed  CAS  Google Scholar 

  • Verma SK, Bansal I, Vedi S, Saxena JK, Katoch VM, Bhattacharya SM (2007) Molecular cloning, purification and characterization of myosin of human lymphatic filarial parasite Brugia malayi. Parasitol Res 102:481–489

    Article  PubMed  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  • Weil GJ, Li BW, Liftis F, Chandrashekar R (1992) Brugia malayi: antibody responses to larval antigens in infected and immunized jirds. Exp Parasitol 74:315–323

    Article  PubMed  CAS  Google Scholar 

  • WHO (1997) Lymphatic filariasis: Reasons for hope. Document No.WHO/CTD/FIL/97.4, Geneva

  • Youliang H, Zhi-Ren L (2002) The ATPase, RNA unwinding, and RNA binding activities of recombinant p68 RNA helicase. J Biol Chem 277:12810–12815

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges University Grants Commission, New Delhi, India, for financial assistance in the form of Senior Research Fellowships to M.S. We are grateful to Mr. A. K. Roy and R. N. Lal for their excellent technical assistance in maintenance of B. malayi infection in laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailja M. Bhattacharya.

Additional information

Nucleotide sequence reported in this paper is available in the GenBank™, EMBL, and DDBJ databases under the accession number EF409381.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, M., Srivastava, K.K. & Bhattacharya, S.M. Molecular cloning and characterization of a novel immunoreactive ATPase/RNA helicase in human filarial parasite Brugia malayi . Parasitol Res 104, 753–761 (2009). https://doi.org/10.1007/s00436-008-1251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-008-1251-6

Keywords

Navigation