Skip to main content
Log in

Behavioural strategies used by the hookworms Necator americanus and Ancylostoma duodenale to find, recognize and invade the human host

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The infective third-stage larvae of the hookworms Necator americanus and Ancylostoma duodenale infect their human hosts by active skin invasion, but A. duodenale is in addition capable of oral infection. The behaviour of the larvae when crawling on surfaces has already been described. Here we analyse in various in vitro systems the other behavioural invasion phases: activation, penetration, and orientation within the host. The larvae normally remained in a motionless, energy-saving, resting posture. An activation to sinusoidal locomotion was stimulated in both species by similar cues such as touch, vibration, water currents, heat, light, and chemicals. Human breath in addition stimulated searching and waving (“nictating”) behaviour, which facilitates a change-over to the host. Activating cues in air streams were warmth and moisture; CO2 activated only in combination with warmth and/or moisture. Penetration behaviour in both species was stimulated by warmth and skin extracts. The stimulating components of skin extracts were fatty acids, but their stimulating characteristics differed from those inducing schistosome cercarial skin penetration. After penetration into agar substrates, both species showed thermo-orientation, but only A. duodenale followed gradients of serum. The directing serum cues were not amino acids and glucose (the supposed cues for schistosome blood vessel localization), but Ringer’s solution attracted the larvae. The host-finding and host-invasion behaviour of both hookworm species is well adapted to the invasion of the human skin, and there seems to be no particular adaptation of A. duodenale behaviour to the oral infection mode. Hookworm host-finding behaviour is not as complex as that of schistosome cercariae but seems well adapted to the ecological conditions in the transmission sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Crompton DWT (2000) The public health importance of hookworm disease. Parasitology 121:S39–S50

    Article  PubMed  Google Scholar 

  • De Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L (2003) Soil-transmitted helminth infections: updating the global picture. Trends Parasitol 19:547–551

    Article  PubMed  Google Scholar 

  • Grabe K, Haas W (2004) Navigation within host tissues: Schistosoma mansoni and Trichobilharzia ocellata schistosomula respond to chemical gradients. Int J Parasitol 34:927–934

    Article  PubMed  Google Scholar 

  • Granzer M, Haas W (1991) Host finding and host recognition of infective Ancylostoma caninum larvae. Int J Parasitol 21:429–440

    Article  CAS  PubMed  Google Scholar 

  • Haas W (1992) Physiological analysis of cercarial behavior. J Parasitol 78:243–255

    CAS  PubMed  Google Scholar 

  • Haas W (1994) Physiological analyses of host-finding behaviour in trematode cercariae: adaptations for transmission success. Parasitology 109:S15-S29

    PubMed  Google Scholar 

  • Haas W (2003) Parasitic worms: strategies of host finding, recognition and invasion. Zoology 106:349–364

    Google Scholar 

  • Haas W, Haberl B (1997) Host recognition by trematode miracidia and cercariae. In: Fried B, Graczyk TK (eds) Advances in trematode biology. CRC Press, Boca Raton, pp 197–227

  • Haas W, Schmitt R (1982a) Characterization of chemical stimuli for the penetration of Schistosoma mansoni cercariae. I. Effective substances, host specificity. Z Parasitenkd 66:293–307

    CAS  PubMed  Google Scholar 

  • Haas W, Schmitt R (1982b). Characterization of chemical stimuli for the penetration of Schistosoma mansoni cercariae. II. Conditions and mode of action. Z Parasitenkd 66:309–319

    CAS  PubMed  Google Scholar 

  • Haas W, Van de Roemer A (1998) Invasion of the vertebrate skin by cercariae of Trichobilharzia ocellata: penetration processes and stimulating cues. Parasitol Res 84:787–795

    Article  CAS  PubMed  Google Scholar 

  • Haas W, Granzer M, Garcia EG (1987) Host identification by Schistosoma japonicum cercariae. J Parasitol 73:568–577

    CAS  PubMed  Google Scholar 

  • Haas W, Granzer M, Brockelman C (1990) Finding and recognition of the bovine host by the cercariae of Schistosoma spindale. Parasitol Res 76:343–350

    CAS  PubMed  Google Scholar 

  • Haas W, Haberl B, Schmalfuss G, Khayyal MT (1994) Schistosoma haematobium cercarial host-finding and host-recognition differs from that of S. mansoni. J Parasitol 80:345–353

    CAS  PubMed  Google Scholar 

  • Haas W, Körner M, Hutterer E, Wegner M, Haberl B (1995) Finding and recognition of the snail intermediate hosts by 3 species of echinostome cercariae. Parasitology 110:133–142

    PubMed  Google Scholar 

  • Haas W, Diekhoff D, Koch K, Schmalfuss G, Loy C (1997) Schistosoma mansoni cercariae: stimulation of acetabular gland secretion is adapted to the chemical composition of mammalian skin. J Parasitol 83:1079–1085

    CAS  PubMed  Google Scholar 

  • Haas W, Grabe K, Geis C, Päch T, Stoll K, Fuchs M, Haberl B, Loy C (2002) Recognition and invasion of human skin by Schistosoma mansoni cercariae: the key-role of L-arginine. Parasitology 124:153–167

    Article  CAS  PubMed  Google Scholar 

  • Haas W, Haberl B, Syafruddin, Idris I, Kersten S (2004) Infective larvae of the human hookworms Necator americanus and Ancylostoma duodenale differ in their orientation behaviour when crawling on surfaces. Parasitol Res (in press)

  • Hoagland KE, Schad GA (1978) Necator americanus and Ancylostoma duodenale: life history parameters and epidemiological implications of two sympatric hookworms of humans. Exp Parasitol 44:36–49

    Article  CAS  PubMed  Google Scholar 

  • Komiya Y, Yasuraoka K (1966) The biology of hookworms. In: Morishita K, Komiya Y, Matsubayashi H (eds) Progress of medical parasitology in Japan, vol 3. Meguro Parasitological Museum, Tokyo, pp 1–114

  • Matthews BE (1982) Skin penetration by Necator americanus larvae. Z Parasitenkd 68:81–86

    CAS  PubMed  Google Scholar 

  • Nawalinski T, Schad G, Chowdhuri AB (1978) Population biology of hookworms in children in rural West Bengal. II. Acquisition and loss of hookworms. Am J Trop Med Hyg 27:1162–1173

    CAS  PubMed  Google Scholar 

  • Salafsky B, Fusco A (1987) Eicosanoids as immunomodulators of penetration by schistosome cercariae. Parasitol Today 3:279–281

    Article  CAS  PubMed  Google Scholar 

  • Salafsky B, Fusco A, Siddiqui A (1990) Necator americanus: factors influencing skin penetration by larvae. In: Schad GA, Warren KS (eds) Hookworm disease: current status and new directions. Taylor and Francis, London, pp 329–339

  • Sasa M, Shirasaka R, Tanaka H, Miura A, Yamamoto H, Katahira K (1960) Observation on the behavior of infective larvae of hookworms and related nematode parasites, with notes on the effect of carbon dioxide in the breath as the stimulant. Jpn J Exp Med 30:433–477

    CAS  PubMed  Google Scholar 

  • Schad GA (1991) The parasite. In: Gilles HM, Ball PAJ (eds) Hookworm infections. Elsevier, Amsterdam, pp 15–49

  • Sciacca J, Forbes WM, Ashton FT, Lombardini E, Gamble HR, Schad GA (2002) Response to carbon dioxide by the infective larvae of three species of parasitic nematodes. Parasitol Int 51:53–62

    Article  CAS  PubMed  Google Scholar 

  • Sukhdeo MVK, Sukhdeo SC (1994) Optimal habitat selection by helminths within the host environment. Parasitology 109:S41-S55

    PubMed  Google Scholar 

  • Sukhdeo MVK, Sukhdeo SC (2002) Fixed behaviours and migration in parasitic flatworms. Int J Parasitol 32:329–342

    Article  CAS  PubMed  Google Scholar 

  • Sukhdeo MVK, Sukhdeo SC, Bansemir AD (2002) Interactions between intestinal nematodes and vertebrate hosts. In: Lewis EE, Campbell JF, Sukhdeo MVK (eds) The behavioural ecology of parasites. CAB International, New York, pp 223–242

  • Vetter JCM, Vingerhoed J, Schoeman E, Wauters HW (1985) Chemotactic attraction of infective hookworm larvae of Ancylostoma caninum by a dog serum factor. Z Parasitenkd 71:539–543

    CAS  PubMed  Google Scholar 

  • Wauters HW, Klaver-Wesseling JCM, Vetter JCM (1982) The effect of ultrafiltrated and dialysed dog serum on the chemotaxis of infective hookworm larvae of Ancylostoma caninum. Z Parasitenkd 68:305–311

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out at the Research Center of the Hasanuddin University, Makassar, Indonesia and at the Institute for Zoology, Erlangen, Germany. We thank our Indonesian counterparts Drs. A. Mangali, I. Patellongi, A.M. Afdal, E.Y. Singka and the members of their teams for their valuable help with the field surveys and the sample collections, and Christina Loy and Bety Sapada for their expert technical work. We also wish to thank Professor Gerhard Schad for his encouragement and advice during this research project. This research was supported by the Deutsche Forschungsgemeinschaft, the Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung, and DAAD. The experiments performed in this work comply with the current laws of Germany and Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, W., Haberl, B., Syafruddin et al. Behavioural strategies used by the hookworms Necator americanus and Ancylostoma duodenale to find, recognize and invade the human host. Parasitol Res 95, 30–39 (2005). https://doi.org/10.1007/s00436-004-1257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-004-1257-7

Keywords

Navigation