Skip to main content
Log in

Purification, characterization and kinetic properties of the Taenia solium glutathione S-transferase isoform 26.5 kDa

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Glutathione S-transferases are major phase II detoxification enzymes. Taenia solium, a parasite of humans and pigs, is exposed to toxic products. The aim of this work was to purify and characterize a T. solium glutathione S-transferase isoform of 26.5 kDa (SGST26.5) in order to obtain its kinetic parameters. Homogeneous SGST26.5 was obtained by a simple purification procedure. SGST26.5 showed a pI of 7.07, and a native M r of 60 kDa with 26.5 kDa subunits. The optimum activity for SGST26.5 was found at pH 6.5–7.0 in the range 10–42°C. SGST26.5 had a specific enzyme activity of 78, 7.1, 6.6, and 0.7 μM min−1 mg−1 with CDNB, 1,2-dichloro-4-nitrobenzene, 2,4-hexadienal and trans-2-nonenal as substrates, respectively. It also had a k cat/K m(CDNB)=2.15×103 M−1 s−1, k cat/K m(GSH)=4.5×103 M−1 s−1 and V max for GSH and CDNB=74 and 77 μM min−1 mg−1, respectively. SGST26.5 was inhibited in a noncompetitive form by cibacron blue, bromosulfophthalein and triphenyltin chloride. Inhibition studies as a function of inhibitor concentration show that the enzyme is a homodimer. Bireactant system analysis show that it follows an ordered sequential mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albassam BA (1998) Inhibition of wheat leaves nitrate reductase activity by cibacron blue. Biochem Mol Biol Int 46: 979–986

    CAS  PubMed  Google Scholar 

  • Armstrong RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10:2–18

    Article  PubMed  Google Scholar 

  • Baars AJ, Jansen M, Breimer D (1979) Xenobiotic metabolizing enzymes in Drosophila melanogaster. Activities of epoxide hydratasa and glutathione S-transferase compared with similar activities in rat liver. Mutat Res 62:279–291

    Article  CAS  PubMed  Google Scholar 

  • Brophy PM, Barret J (1990a) Strategies for detoxification of aldehydic products of lipid peroxidation in helminthes. Mol Biochem Parasitol 42:205–212

    Article  CAS  PubMed  Google Scholar 

  • Brophy PM, Barret J (1990b) Glutathione transferase in helminthes. Parasitology 100:345–349

    CAS  PubMed  Google Scholar 

  • Brophy PM, Barret J (1990c) Blocking factors and the isolation of glutathione transferase from Hymenolepis diminuta (Cestoda: Cyclophylidea). Parasitology 100:137–141

    CAS  PubMed  Google Scholar 

  • Brophy PM, Pritchard DI (1994) Parasitic helminth glutathione S-transferases: an update on their potential as targets for immuno- and chemotherapy. 79:89–96

  • Brophy PM, Southan C, Barret J (1989) Glutathione transferases in the tapeworm Moniezia expansa. Biochem J 262:939–946

    CAS  PubMed  Google Scholar 

  • Caccuri AM, Antonini G, Board P, Flanagan J, Parker MW, Paolesse R, Turella P, Federic G, Lo Bello M, Ricci G (2001) Human glutathione transferase T2-2 discloses some evolutionary strategies for optimization of substrate binding to the active site of glutathione transferases. J Biol Chem 276: 5427–5431

    Article  CAS  PubMed  Google Scholar 

  • Clark AG (1989) The comparative enzymology of the glutathione S-transferases from non-vertebrate organisms. Comp Biochem Physiol 92B: 419–446

    CAS  Google Scholar 

  • Cochrane BJ, Morrissey JJ, LeBlanc GA (1987) The genetics of xenobiotic metabolism in Drosophila. IV. Purification and characterization of the major glutathione S-transferase. Insect Biochem 17:731–738

    CAS  Google Scholar 

  • Dierickx PJ (1987) Soluble glutathione S-transferase isoenzymes in Daphnia magna strains and their interactions with 2,4-dichlorophenoxy acetic acid and 1,4-benzoquinone. Insect Biochem 17:1–6

    Article  CAS  Google Scholar 

  • Dixon HBF, Lipscomb FM (1961) Cysticercosis: an analysis and follow up 450 cases. Privy Council Med Res Spec Rep Ser Lond 229:1–58

    Google Scholar 

  • Frear DS, Swanson HR (1970) Biosynthesis of S-(4-ethylamino-6-isopropylamino-2-s-triazino) glutathione S-transferase from corn. Phytochemistry 9:2123–2132

    Article  CAS  Google Scholar 

  • Gonzalez R, Mendoza-Hernandez G, Plancarte A (2002) Purification of Taenia solium cysticerci superoxide dismutase and myoglobin copurification. Parasitol Res 88:881–887

    Article  CAS  PubMed  Google Scholar 

  • Habig W H, Jakoby W (1981) Assays for differentiation of glutathione S-transferase. Methods Enzymol 77:398–405

    CAS  PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  • Jakoby WB (1976) The glutathione S-transferase: a triple-threat in detoxication, In: De Serres FJR, Bend JR, Philpot RM (eds) In vitro metabolic activation in mutagenesis testing. Elsevier/North-Holland Biomedical, Amsterdam, p 207

  • Ketter B, Coles B, Meyer DJ (1983) The role of glutathione in detoxication. Environ Health Perspect 49:59–69

    PubMed  Google Scholar 

  • Laemmli V (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lowry O, Rosenbrough N, Lewis-Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mannervik B (1985) The isoenzymes of glutathione transferase Adv Enzymol Relat Areas Mol Biol 57:357–417

    CAS  Google Scholar 

  • Mannervik B (1988) Glutathione transferases-structure and catalytic activity. CRC Crit Rev Biochem 23:283–337

    CAS  Google Scholar 

  • Mannervik B, Alin P, Guthenberg C, Jensson H, Tahir MK, Jornvall H (1985) Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymic properties. Proc Natl Acad Sci U S A 82:7202

    CAS  PubMed  Google Scholar 

  • O’Leary KA, Hathaway KM, Tracy JW (1992) Schistosoma mansoni: single step purification and characterization of glutathione S-transferase isoenzyme 4. Exp Parasitol 75:47–55

    CAS  PubMed  Google Scholar 

  • Paglia, DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  • Segel I (1975) Enzyme kinetics. Behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York, pp 100–160

  • Sheehan D, Meade G, Foley, VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    CAS  PubMed  Google Scholar 

  • Sjostrom M, Jakobsson P, Heimburger, M, Palmblad J, Haeggstrom J (2001) Human umbilical vein endothelial cells generate leukotriene C4 via microsomal glutathione S-transferase type 2 and express the CysLT1 receptor. Eur J Biochem 268:2578–2586

    Article  CAS  PubMed  Google Scholar 

  • Tahir MK, Mannervik B (1985) Inhibitors for distinction of three types of human glutathione transferase. FEBS 181:249–252

    Article  CAS  Google Scholar 

  • Tahir MK, Mannervik B (1986) Simple inhibition studies for distinction between homodimeric and heterodimeric isoenzymes of glutathione transferase. J Biol Chem 261:1048–1051

    CAS  PubMed  Google Scholar 

  • Thomas ML, Rodees DG (1990) Determination of size, molecular weight, and presence of subunits. Methods Enzymol 182:566–587

    PubMed  Google Scholar 

  • Vibanco-Pérez N, Jiménez L, Merchant MT, Landa A (1999) Characterization of glutathione S-transferase of Taenia solium. J Parasitol 85: 448–453

    PubMed  Google Scholar 

  • Vibanco-Perez N, Jiménez L, Mendoza-Hernandez G, Landa A (2002) Characterization of a recombinant mu-class glutathione S-transferase from Taenia solium. Parasitol Res 88:398–404

    Article  CAS  PubMed  Google Scholar 

  • White AC (1997) Neurocysticercosis: a major cause of neurological disease worldwide. Clin Infect Dis 24:101–113

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed by the Consejo Nacional de Ciencia y Tecnología, México (Conacyt 27556-M) and Dirección General de Asuntos del Personal Académico, México) DGAPA IN212600. The authors wish to thank Dr. Gerardo Medina for valuable English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Plancarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plancarte, A., Rendon, J.L. & Landa, A. Purification, characterization and kinetic properties of the Taenia solium glutathione S-transferase isoform 26.5 kDa. Parasitol Res 93, 137–144 (2004). https://doi.org/10.1007/s00436-004-1103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-004-1103-y

Keywords

Navigation