Skip to main content
Log in

Structure, function and evolution of somatic musculature in Dasydytidae (Paucitubulatina, Gastrotricha)

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The musculature of two species of the gastrotrich taxon Dasydytidae, Dasydytes (Dasydytes) goniathrix and Haltidytes crassus, was investigated and described using phalloidin staining, confocal microscopy and computer-aided three-dimensional data analysis. Dasydytidae is a peculiar taxon of freshwater Gastrotricha, containing species that are characterized by different adaptations to a semiplanktonic lifestyle, a rather uncommon feature among primarily benthic Gastrotricha. Like other dasydytid species studied so far, D. goniathrix and H. crassus possess a system of movable cuticular spines with an associated system of somatic oblique and segmented lateral muscles. The presence of other somatic (dorsodermal muscles R1 and R2) and visceral muscles (musculi ventrales, m. ventrolaterales, m. dorsales, m. helicoidales) known from a wide range of gastrotrich species was confirmed. Regarded from a functional perspective, the earlier proposed antagonistic role of oblique muscles (as spine abductors) and segmented lateral muscles (as adductors) is questioned for the species studied herein. Alternatively, our structural and behavioral observations suggest that muscular spine abduction in D. goniathrix is brought about by synergistic contraction of the musculi obliqua and m. laterales, and a passive adduction due to muscle relaxation and elastic recoil of the trunk and cuticle. For H. crassus, we hypothesize active muscular spine abduction by contraction of the musculi obliqua plus the last segment of m. laterales accompanied by severe cuticle deformations close to the spine insertions. Adduction is achieved by cuticle reformation due to elasticity and increase in tissue pressure brought about by muscle action, possibly of enforced dorsodermal muscles. The newly obtained and published muscular data of further gastrotrich species were gathered in a species-character matrix. Based on this data set, a maximum parsimony analysis of representatives of the Dasydytidae has been conducted. According to this analysis, there are three well-supported monophyletic lineages within likewise monophyletic Dasydytidae. The first lineage comprises the taxa Anacanthoderma, Stylochaeta and Chitonodytes, the second comprises Dasydytes, Setopus and Ornamentula, and the third represents the taxon Haltidytes. Relationships between these clades could be resolved but are only weakly supported. The new phylogenetic hypothesis is used to reconstruct the ancestral character pattern and to infer possible evolutionary transformations within the Dasydytidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with imageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Balsamo M, Todaro MA (2002) Gastrotricha. In: Rundle SD et al (eds) Freshwater Meiofauna: biology and ecology. Backhuys Publishers, Leiden, pp 45–61

    Google Scholar 

  • Balsamo M, d’Hondt J-L, Pierboni L, Grilli P (2009) Taxonomic and nomenclatural notes on freshwater Gastrotricha. Zootaxa 2158:1–19

    Google Scholar 

  • Hochberg R (2005) Musculature of the primitive gastrotrich Neodasys (Chaetonotida): functional adaptations to the interstitial environment and phylogenetic significance. Mar Biol 146:315–323

    Article  Google Scholar 

  • Hochberg R, Gurbuz OA (2007) Functional morphology of somatic muscles and anterolateral setae in Filinia novaezealandiae Shiel and Sanoamuang, 1993 (Rotifera). Zool Anz 246:11–22

    Article  Google Scholar 

  • Hochberg R, Gurbuz OA (2008) Comparative morphology of the somatic musculature in species of Hexarthra and Polyarthra (Rotifera, Monogononta): its function in appendage movement and escape behavior. Zool Anz 247:233–248

    Article  Google Scholar 

  • Hochberg R, Litvaitis MK (2000) Phylogeny of Gastrotricha: a morphology-based framework of gastrotrich relationships. Biol Bull 198:299–305

    Article  PubMed  CAS  Google Scholar 

  • Hochberg R, Litvaitis MK (2001a) A muscular double helix in gastrotricha. Zool Anz 240:61–68

    Article  Google Scholar 

  • Hochberg R, Litvaitis MK (2001b) The musculature of Draculiciteria tesselata (Chaetonotida, Paucitubulatina): implications for the evolution of dorsoventral muscles in Gastrotricha. Hydrobiologia 452:155–161

    Article  Google Scholar 

  • Hochberg R, Litvaitis MK (2001c) The muscular system of Dactylopodola baltica and other macrodasyidan gastrotrichs in a functional and phylogenetic perspective. Zool Scripta 30:325–336

    Article  Google Scholar 

  • Hochberg R, Litvaitis MK (2001d) Functional morphology of muscles in Tetranchyroderma papii (Gastrotricha). Zoomorphology 121:37–43

    Article  Google Scholar 

  • Hochberg R, Litvaitis MK (2003) Organization of muscles in Chaetonotida Paucitubulatina (Gastrotricha). Meiofauna Mar 12:47–58

    Google Scholar 

  • Hummon WD (1974) Intertidal marine gastrotricha from Colombia. Bull Mar Sci 24:396–408

    Google Scholar 

  • Kånneby T (2011) New species and new records of freshwater Chaetonotida (Gastrotricha) from Sweden. Zootaxa 3115:29–55

    Google Scholar 

  • Kånneby T, Todaro MA, Jondelius U (2012) A phylogenetic approach to species delimitation in freshwater Gastrotricha from Sweden. Hydrobiologia 683:185–202

    Article  Google Scholar 

  • Kieneke A, Martínez Arbizu P, Riemann O (2008a) Body Musculature of Stylochaeta scirtetica Brunson, 1950 and Dasydytes (Setodytes) tongiorgii (Balsamo, 1982) (Gastrotricha: Dasydytidae): a functional approach. Zool Anz 247:147–158

    Article  Google Scholar 

  • Kieneke A, Riemann O, Ahlrichs WH (2008b) Novel implications for the basal internal relationships of Gastrotricha revealed by an analysis of morphological characters. Zool Scripta 37:429–460

    Article  Google Scholar 

  • Kisielewski J (1991) Inland-water Gastrotricha from Brazil. Ann Zool 43(2):1–168

    Google Scholar 

  • Leasi F, Todaro MA (2008) The muscular system of Musellifer delamarei (Renaud-Mornant, 1968) and other chaetonotidans with implications for the phylogeny and systematisation of the Paucitubulatina (Gastrotricha). Biol J Linn Soc 94:379–398

    Article  Google Scholar 

  • Leasi F, Todaro MA (2009) Meiofaunal cryptic species revealed by confocal microscopy: the case of Xenotrichula intermedia (Gastrotricha). Mar Biol 156:1335–1346

    Article  Google Scholar 

  • Leasi F, Rothe BH, Schmidt-Rhaesa A, Todaro MA (2006) The musculature of three species of gastrotrichs surveyed with confocal laser scanning microscopy (CLSM). Acta Zool 87:171–180

    Article  Google Scholar 

  • Lee D-C, Bryant HN (1999) A reconsideration of the coding of inapplicable characters: assumptions and problems. Cladistics 15:373–378

    Article  Google Scholar 

  • Maddison W P, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75 (http://mesquiteproject.org)

  • Maddison DR, Swofford DL, Maddison WP (1997) NEXUS: an extendible file format for systematic information. Syst Biol 46:590–621

    Article  PubMed  CAS  Google Scholar 

  • Melone G, Ricci C (1995) Rotatory apparatus in Bdelloids. Hydrobiologia 313/314:91–98

    Google Scholar 

  • Page RDM (2001) NDE—nexus data editor version 0.5.0 [Computer software]. Available via http://taxonomy.zoology.gla.ac.uk/rod/rod.html

  • Rasband WS (1997–2007) ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/

  • Remane A (1936) Gastrotricha. In: Bronn HG (ed) Klassen und Ordnungen des Tierreiches, 4. Band: Vermes II. Abteilung Askelminthes, Trochhelminthes. Akademische Verlagsgesellschaft, Leipzig, pp 1–242

  • Rieger R, Tyler S (1979) The homology theorem in ultrastructural research. Am Zool 19:655–664

    Google Scholar 

  • Rothe BH, Schmidt-Rhaesa A, Kieneke A (2011a) The nervous system of Neodasys chaetonotoideus (Gastrotricha: Neodasys) revealed by combining confocal laserscanning and transmission electron microscopy–evolutionary comparison of neuroanatomy within the Gastrotricha and basal Protostomia. Zoomorphology 130:51–84

    Article  Google Scholar 

  • Rothe BH, Kieneke A, Schmidt-Rhaesa A (2011b) The nervous system of Xenotrichula intermedia and X. velox (Gastrotricha: Paucitubulatina) by means of immunohistochemistry (IHC) and TEM. Meiofauna Mar 19:71–88

    Google Scholar 

  • Ruppert EE (1991) Gastrotricha. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, Aschelminthes. Wiley, New York, pp 41–109

    Google Scholar 

  • Schwank P (1990) Gastrotricha. In: Schworbel J, Zwick P (eds) Süßwasserfauna von Mitteleuropa, Band 3, Teil 1. Gustav Fischer, Stuttgart, pp 1–252

    Google Scholar 

  • Strong EE, Lipscomb D (1999) Character coding and inapplicable data. Cladistics 15:363–371

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*—phylogenetic analysis using parsimony (*and Other Methods). Version 4. [Computer software and manual]. Sinauer Associates, Sunderland, Massachusetts

  • Todaro MA (2012) Gastrotricha World Portal, webpage, last update 04 Jan 2012 (http://www.gastrotricha.unimore.it/)

  • Wägele JW (2005) Foundations of phylogenetic systematics. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • Wanninger A (2007) The application of confocal microscopy and 3D imaging software in functional, evolutionary, and developmental zoology: reconstructing myo- and neurogenesis in space and time. In: Mendez-Vilas A, Dias J (eds) Modern research and educational topics in microscopy. Formatex, Badajoz, pp 353–361

    Google Scholar 

  • Zelinka K (1889) Die Gastrotrichen. Eine monographische Darstellung ihrer Anatomie, Biologie und Systematik. Z wiss Zool 49:209–384

    Google Scholar 

Download references

Acknowledgments

Many of the data presented in this publication are results of a practical laboratory module and the bachelor thesis of AO. We want to thank Wilko Ahlrichs and Olaf Bininda-Emonds (University of Oldenburg, Germany) for providing laboratory space and further scientific infrastructure during that time. Many thanks go as well to the head of our institute, Pedro Martínez Arbizu, for providing an uncomplicated access to the confocal microscope any time and for further ideational and substantial support. Rick Hochberg and a second anonymous reviewer did a great job on improving the first version of this manuscript. Additional editorial remarks by Thomas Bartolomaeus are also acknowledged. AK is supported through a postdoctoral appointment of the Senckenberg Research Institute and Natural History Museum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kieneke.

Additional information

Communicated by T. Bartolomaeus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 11 kb)

Supplementary material 2 (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kieneke, A., Ostmann, A. Structure, function and evolution of somatic musculature in Dasydytidae (Paucitubulatina, Gastrotricha). Zoomorphology 131, 95–114 (2012). https://doi.org/10.1007/s00435-012-0152-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-012-0152-5

Keywords

Navigation