Skip to main content
Log in

Sexual dimorphism in the skull geometry of newt species of Ichthyosaura, Triturus and Lissotriton (Salamandridae, Caudata, Amphibia)

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

In this study, we applied geometric morphometrics to explore variations in the level and pattern of sexual size dimorphism (SSD) and sexual shape dimorphism (SShD) of the ventral cranium in three different Modern Eurasian newt taxa (Ichthyosaura alpestris, Triturus species group and Lissotriton vulgaris). The ventral cranium is the part of the skull that is more directly related to foraging and feeding. Our results indicate that the level and pattern of sexual dimorphism in the ventral cranium differ among Modern Eurasian newt taxa. Regarding sexual dimorphism in skull size, Ichthyosaura alpestris and Triturus species show female-biased patterns (females are larger than males), whereas Lissotriton vulgaris appears to be non-dimorphic in skull size. In I. alpestris and Triturus species, SShD is mostly absent, whereas in L. vulgaris, SShD is more pronounced. A high level of variation between populations in both SSD and SShD indicates that local conditions may have a profound effect on the magnitude and direction of sexual dimorphism. The significant sexual differences in ventral cranium size and shape indicate possible subtle intersexual differences in ecological demands due to diet specialisation, in spite of similar general ecological settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abouheif E, Fairbairn DJ (1997) A comparative analysis of allometry for sexual size dimorphism: assessing Rensch’s rule. Am Nat 149:540–562

    Article  Google Scholar 

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool 71:5–16

    Article  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Babik W, Branicki W, Crnobrnja-Isailović J, Cogălniceanu D, Sas I, Olgun K, Poyarkov NA, Garcia-París M, Arntzen JW (2005) Phylogeography of two European newt species: discordance between mtDNA and morphology. Mol Ecol 14:2475–2491

    Article  PubMed  CAS  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmarks data: geometry and biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bruner E, Constantini D, Fanfani A, Dell’Omo G (2005) Morphological variation and sexual dimorphism of the cephalic scales in Lacerta billineata. Acta Zool 86:245–254

    Article  Google Scholar 

  • Butler MA (2007) Vive le difference! Sexual dimorphism and adaptive patterns in lizards of the genus Anolis. ICB 47:272–284

    Google Scholar 

  • Butler MA, Losos JB (2002) Mutivariate sexual dimorphism, sexual selection, and adaptation in Greater Antillean Anolis lizards. Ecol Monog 72:541–559

    Article  Google Scholar 

  • Cardini A, Elton S (2008) Variation in guenon skulls (II): sexual dimorphism. J Hum Evol 54:638–647

    Article  PubMed  Google Scholar 

  • Denoël M (2004) Feeding performance in heterochronic alpine newts is consistent with trophic niche and maintenance of polymorphism. Ethology 110:127–136

    Article  Google Scholar 

  • Denoël M, Schabetsberger R, Joly P (2004) Trophic specialisations in alternative heterochronic morphs. Naturwissenschaften 91:81–84

    Article  PubMed  Google Scholar 

  • Fairbairn DJ, Blanckenhorn WU, Szekely T (2007) Sex, size and gender roles: evolutionary studies of sexual size dimorphism. Oxford University Press, Oxford

  • Gabor CR, Halliday TR (1997) Sequential mate choice by multiply mating smooth newt: females become more choosy. Behav Ecol 8:162–166

    Article  Google Scholar 

  • Gabor CR, Krenz JD, Jaeger RG (2000) Female choice, male interference, and sperm precedence in the red-spotted newt. Behav Ecol 11:115–124

    Article  Google Scholar 

  • Gidaszewski NA, Baylac M, Klingenberg CP (2009) Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster species. BMC Evol Biol 9:110

    Article  PubMed  Google Scholar 

  • Griffiths RA (1986) Feeding niche overlap and food selection in smooth and palmate newts, Triturus vulgaris and T. helveticus, at a pond in mid-Wales. J Anim Ecol 55:201–214

    Article  Google Scholar 

  • Griffiths RA (1987) Microhabitat and seasonal niche dynamics of smooth and palmate newts, Triturus vulgaris and T. helveticus, at a pond in mid-Wales. J Anim Ecol 56:441–451

    Article  Google Scholar 

  • Griffiths RA (1996) Newts and salamanders of Europe. Poyser, London

    Google Scholar 

  • Hallgrímsson B, Hall BK (2005) Variation: a central concept in biology. Elsevier Academic Press, New York

    Google Scholar 

  • Halliday TR (1977) The courtship of European newts. An evolutionary perspective. In: Taylor DH, Guttman SI (eds) The reproductive biology of amphibians. Plenum, New York, pp 185–232

    Google Scholar 

  • Herler J, Kerschbaumer M, Mitteroecker P, Posti L, Sturmbauer C (2010) Sexual dimorphism and population divergence in the Lake Tanganyika cichlid fish genus Tropheus. Front Zool 7:4

    Article  PubMed  Google Scholar 

  • Hoeck PEA, Garner TWJ (2007) Female alpine newts (Triturus alpestris) mate initially with males signalling fertility benefits. Biol J Linn Soc 91:483–491

    Article  Google Scholar 

  • Iordansky N (1996) Evolution of the musculature of the jaw apparatus in the Amphibia. Adv Amphib Res Former Soviet Union 1:3–26

    Google Scholar 

  • Ivanović A, Sotiropoulos K, Furtula M, Džukić G, Kalezić ML (2008a) Sexual size and shape evolution in European newts (Amphibia: Caudata: Salamandridae) on the Balkan Peninsula. J Zool Syst Evol Res 46:381–387

    Article  Google Scholar 

  • Ivanović A, Sotiropoulos K, Vukov TD, Eleftherakos K, Džukić G, Polymeni RM, Kalezić ML (2008b) Cranial shape variation and molecular phylogenetic structure of crested newts (Triturus cristatus superspecies: Caudata, Salamandridae) in the Balkans. Biol J Linn Soc 95:348–360

    Article  Google Scholar 

  • Ivanović A, Sotiropoulos K, Džukić G, Kalezić ML (2009) Skull size and shape variation vs. molecular phylogeny: study case of the alpine newts (Mesotriton alpestris, Salamandridae) from the Balkan Peninsula. Zoomorphology 128:157–167

    Article  Google Scholar 

  • Jamniczky HA, Boughner JC, Rolian C, Gonzalez PN, Powell CD, Schmidt EJ, Parsons TE, Bookstein FL, Hallgrímsson B (2010) Rediscovering Waddington in the post-genomic age. BioEssays 32:553–558

    Article  PubMed  Google Scholar 

  • Jehle R, Bouma P, Sztatecsny M, Arntzen JW (2000) High aquatic niche overlap in the newts Triturus cristatus and T. marmoratus (Amphibia, Urodela). Hydrobiologia 437:149–155

    Article  Google Scholar 

  • Kaliontzopoulou A, Carretero MA, Llorente GA (2008) Head shape allometry and proximate causes of head sexual dimorphism in Podarcis lizards: joining linear and geometric morphometrics. Biol J Linn Soc 93:111–124

    Article  Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    Article  PubMed  Google Scholar 

  • Kupfer A (2007) Sexual size dimorphism in amphibians: and overview. In: Fairbairn DJ, Blanckenhorn WU, Szekely T (eds) Sex, size and gender roles: evolutionary studies of sexual size dimorphism. Oxford University Press, Oxford, pp 50–60

    Google Scholar 

  • Ljubisavljević K, Urošević A, Aleksić I, Ivanović A (2010) Sexual dimorphism of skull shape in lacertid lizard species (Podarcis spp., Dalmatolacerta sp., Dinarolacerta sp.) revealed by geometric morphometrics. Zoology 113:168–174

    Article  PubMed  Google Scholar 

  • Lynch JM, Conroy JWH, Kitchener AC, Jefferies DJ, Hayden TJ (1996) Variation in cranial form and sexual dimorphism among five European populations of the otter (Lutra lutra). J Zool Lond 238:81–96

    Article  Google Scholar 

  • Malmgren JC, Thollesson M (1999) Sexual size and shape dimorphism in two species of newts, Triturus cristatus and T. vulgaris (Caudata: Salamandridae). J Zool Lond 249:127–136

    Article  Google Scholar 

  • Raxworthy CJ (1990) A review of the smooth newt (Triturus vulgaris) subspecies, including an identification key. Herp Jour 1:481–492

    Google Scholar 

  • Rohlf FJ (2005) tpsDig program, version 2.04, Ecology and evolution, SUNY at Stony Brook. Available at http://life.bio.sunysb.edu/morph/. Accessed 02. April 2011

  • Rohlf FJ, Slice DE (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Biol 39:40–59

    Google Scholar 

  • Schoener TW (1967) The ecological significance of sexual dimorphism in size of the lizard Anolis conspersus. Science 155:474–478

    Article  PubMed  CAS  Google Scholar 

  • Schoener TW (1977) Competition and the niche. In: Gans C, Tinkle DW (eds) Biology of the reptilia, vol 7. Academic Press, London, pp 35–136

    Google Scholar 

  • Schutz H, Polly PD, Kreiger JD, Guralnick RP (2009) Differential sexual dimorphism: size and shape in the cranium and pelvis of grey foxes (Urocyon). Biol J Linn Soc 96:339–353

    Article  Google Scholar 

  • Schwarzkopf L (2005) Sexual dimorphism in body shape without sexual dimorphism in body size. Herpetologica 61:116–123

    Article  Google Scholar 

  • Sheets HD (2003) IMP—integrated morphometrics package. Buffalo: Department of Physics, Canisius College. Available at http://www3.canisius.edu/_sheets/morphsoft.html

  • Shine R (1989) Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Quart Rev Biol 64:419–461

    Article  PubMed  CAS  Google Scholar 

  • Sotiropoulos K, Eleftherakos K, Džukić G, Kalezić ML, Legakis A, Polymeni RM (2007) Phylogeny and biogeography of the alpine newt Mesotriton alpestris (Salamandridae, Caudata), inferred from mtDNA sequences. Mol Phylogenet Evol 45:211–226

    Article  PubMed  CAS  Google Scholar 

  • Steinfartz S, Vicario S, Arntzen JW, Caccone A (2007) A Bayesian approach on molecules, morphology and behavior: reconsidering phylogenetic and evolutionary patterns of the Salamandridae with emphasis on Triturus newts. J Exp Biol (Mol Devol Evol) 308B:139–162

    Article  Google Scholar 

  • Vidal M, Ortiz JC, Ramirez CC, Lamborot M (2005) Intraspecific variation in morphology and sexual dimorphism in Liolaemus tenuis (Tropiduridae). Amphibia-Reptilia 26:343–351

    Article  Google Scholar 

  • Webb TJ, Freckleton RP (2007) Only half right: species with female-biased sexual size dimorphism consistently break Rensch’s rule. PLoS One 9:1–10

    Google Scholar 

  • Wielstra B, Arntzen JW (2011) Unraveling the rapid radiation of crested newts (Triturus cristatus superspecies) using complete mitogenomic sequences. BMC Evol Biol 11:162

    Article  PubMed  Google Scholar 

  • Wielstra B, Espregueira Themudo G, Güçlü O, Olgun K, Poyarkov NA, Arntzen JW (2010) Cryptic crested newt diversity at the Eurasian transition: the mitochondrial DNA phylogeography of Near Eastern Triturus newts. Mol Phylogenet Evol 56:888–896

    Article  PubMed  CAS  Google Scholar 

  • Young KA (2005) Life-history variation and allometry for sexual size dimorphism in pacific salmon and trout. Proc R Soc B 272:167–172

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Andrea Cardini and an anonymous reviewer for comments that led to substantial improvements in the paper. This study was supported financially by the Serbian Ministry of Education and Science, grant no. 173043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Ivanović.

Additional information

Communicated by A. Cardini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanović, A., Kalezić, M.L. Sexual dimorphism in the skull geometry of newt species of Ichthyosaura, Triturus and Lissotriton (Salamandridae, Caudata, Amphibia). Zoomorphology 131, 69–78 (2012). https://doi.org/10.1007/s00435-011-0143-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-011-0143-y

Keywords

Navigation