Skip to main content

Advertisement

Log in

Skeletal alterations and polymorphism in a Mediterranean bryozoan at natural CO2 vents

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Colonies of the cheilostome bryozoan Schizoporella errata were grown at a site near Ischia Island (Tyrrhenian Sea, Italy) where volcanogenic CO2 emissions lower seawater pH to 7.76, simulating levels of ocean acidification predicted for the end of the present century. Compared with colonies from a control site (mean pH = 8.09), putative defensive polymorphs (avicularia) were significantly fewer, and retarded growth of zooidal basal and lateral walls was evident at the low pH site. The lower proportion of avicularia suggests a switch in resource allocation away from defence to favouring rapid growth. In addition, corrosion of the skeleton was observed in both new and old zooids at the low pH site, and feeding zooids were slightly smaller but had larger orifices for the protrusion of feeding lophophores. These findings corroborate previous studies demonstrating potential dissolution of carbonate skeletons in low pH seawater, while providing new insight into the possible ability of colonial species to respond to ocean acidification by adjusting resource allocation between zooids of different types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amui-Vedel A-M, Hayward PJ, Porter JS (2007) Zooid size and growth rate of the bryozoan Cryptosula pallasiana Moll in relation to temperature, in culture and in its natural environment. J Exp Mar Biol Ecol 353:1–12

    Article  Google Scholar 

  • Atkinson D, Morley SA, Hughes RN (2006) From cells to colonies: at what levels of body organization does the ‘temperature-size’ rule apply. Evol Dev 8:202–214

    Article  PubMed  Google Scholar 

  • Barry JP, Hall-Spencer JM, Tyrrell T (2010) In situ perturbation experiments: natural venting sites, spatial/temporal gradients in ocean pH, manipulative in situ p(CO2) perturbations. In: Riebesell U, Fabry VJ, Hansonn L, Gattuso JP (eds) Guide to best practices for ocean acidification research and data reporting, Luxembourg Publ. Office, pp 1–260

  • Bayer MM, Todd CD, Hoyle JE, Wilson JFB (1997) Wave-related abrasion induces formation of extended spines in a marine bryozoan. Proc Royal Soc Biol Sci 264:1605–1611

    Article  Google Scholar 

  • Best MA, Thorpe JP (2002) Use of radioactive labelled food to assess the role of the funicular system in the transport of metabolites in the cheilostome bryozoan Membranipora membranacea (L.). In: Wyse Jackson PN, Buttler CJ, Spencer Jones ME (eds) Bryozoan studies 2001. Swets and Zeitlinger BV, Lisse, pp 29–35

    Google Scholar 

  • Boardman RS, Cheetham AH (1973) Degree of colony dominance in stenolaemate and gymnolaemate Bryozoa. In: Boardman RS, Cheetham AH, Oliver WA Jr (eds) Animal colonies. Dowen, Hutchinson and Ross, Stroudsburg, pp 121–220

    Google Scholar 

  • Bock P (2001–2009) The Bryozoa homepage [internet]. c. Victoria (Aus): Bock P. Accessed 29 Jan 2009. Available from http://www.bryozoa.net/cheilostomata/schizoporellidae/schizoporella.html

  • Bone EK, Keough MJ (2005) Responses to damage in an arborescent bryozoan: effects of injury location. J Exp Mar Biol Ecol 324:127–140

    Article  Google Scholar 

  • Buia MC, Gambi MC, Lorenti M, Dappiano M, Zupo V (2003) Aggiornamento sulla distribuzione e sullo stato ambientale dei sistemi a fanerogame marine (P. oceanica e C. nodosa) delle isole Flegree. Acc Sc Lett Arti Napoli, Mem Soc Sc Fis Mat 5:163–186

    Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  PubMed  CAS  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geoph Res 110:C09S04

    Article  Google Scholar 

  • Carter MC, Gordon DP, Gardner JPA (2010a) Polymorphism and variation in modular animals: morphometric and density analyses of bryozoan avicularia. Mar Biol 399:117–130

    Google Scholar 

  • Carter MC, Gardner JPA, Gordon DP (2010b) Polymorphism and vestigiality: comparative anatomy and morphology of bryozoan avicularia. Zoomorphology 129:195–211

    Article  Google Scholar 

  • Checkley DM Jr, Dickson AG, Takahashi M, Radich JA, Eisenkolb N, Asch R (2009) Elevated CO2 enhances otolith growth in young fish. Science 324:1683

    Article  PubMed  CAS  Google Scholar 

  • Chiodini G, Avino R, Brombach T, Caliro S, Cardellini C, de Vita S, Frondini F, Marotta E, Ventura G (2004) Fumarolic and diffuse soil degassing west to Mount Epomeo, Ischia (Italy). J Vulcanol Geotherm Res 133:291–309

    Article  CAS  Google Scholar 

  • Cigliano M, Gambi MC, Rodolfo-Metalpa R, Patti FP, Hall-Spencer JM (2010) Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar Biol 157(11):2489–2502. doi:10.1007/s00227-010-1513-6

    Article  Google Scholar 

  • Cocito S, Ferdeghini F, Morri C, Bianchi CN (2000) Patterns of bioconstruction in the cheilostome bryozoan Schizoporella errata: the influence of hydrodynamics and associated biota. Mar Ecol Prog Ser 192:153–161

    Article  Google Scholar 

  • de Alteriis G, Toscano F (2003) Introduzione alla geologia dei mari circostanti le isole Flegree di Ischia, Procida e Vivara. Acc Sc Lett Art Napoli, Mem Soc Fis Mat 5:3–26

    Google Scholar 

  • de Alteriis G, Insinga DD, Morabito S, Morra V, Chiocci FL, Terrasi F, Lubritto C, Di Benedetto C, Pazzanese M (2010) Age of submarine debris avalanches and tephrostratigraphy offshore Ischia Island, Tyrrhenian Sea, Italy. Mar Geol 278(1–4):1–18. doi:10.1016/j.margeo.2010.08.004

    Article  Google Scholar 

  • de Caralt S, Sánchez-Fontenla J, Uriz MJ, Wijffels RH (2010) In situ aquaculture methods for Dysidea avara (Demospongiae, Porifera) in the northwestern Mediterranean. Mar Drug 8:1731–1742

    Article  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Gattuso JP, Lavigne H (2009) Technical note: approaches and software tools to investigate the impact of ocean acidification. Biogeoscience 6:2121–2133

    Article  CAS  Google Scholar 

  • Gieskes JM (1969) Effects of temperature on the pH of seawater. Limn Ocean 14:679–685

    Article  CAS  Google Scholar 

  • Gordon DP, Mawatari SF (1992) Atlas of marine-fouling Bryozoa of New Zealand ports and harbours. N Z Oceanogr Instit Misc Publ 107:1–52

    Google Scholar 

  • Hageman SJ, Bayer M, Todd CD (2002) Partitioning phenotypic variation: implications for morphometric analyses (Bryozoa). In: Wyse Jackson PN, Buttler CJ, Spencer Jones ME (eds) Bryozoan studies 2001. Swets and Zeitlinger, Lisse, pp 131–140

    Google Scholar 

  • Hageman SJ, Needham LL, Todd CD (2009) Threshold effects of food concentration on the skeletal morphology of the bryozoan Electra pilosa (Linnaeus, 1767). Lethaia 42:438–451

    Article  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99

    Article  PubMed  CAS  Google Scholar 

  • Harvell CD (1994) The evolution of polymorphism in colonial invertebrates and social insects. Quart Rev Biol 69:155–185

    Article  Google Scholar 

  • Hayward PJ, Ryland JS (1999) Cheilostomatous Bryozoa. Part 2: Hippothooidea–Celleporoidea. In: Barnes RSK, Crothers JH (eds) Linnean synopses of the British fauna (new series). Field Studies Council, UK, pp 207–221

    Google Scholar 

  • Hermansen P, Larsen PS, Riisgard HU (2001) Colony growth rate of encrusting marine bryozoans (Electra pilosa and Celleporella hyalina). J Exp Mar Biol Ecol 263:1–23

    Article  Google Scholar 

  • Hughes RN (2005) Lessons in modularity: the evolutionary ecology of colonial invertebrates. Sci Mar 69:169–179

    Article  Google Scholar 

  • Hunter E, Hughes RN (1994) The influence of temperature, food ration and genotype on zooid size of Celleporella hyalina (L.). In: Hayward PJ, Ryland JS, Taylor PD (eds) Biology and paleobiology of bryozoans. Olsen and Olsen, Fredensborg, pp 83–86

    Google Scholar 

  • Iglesias-Rodriguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DR, Tyrrel T, Gibbs SJ, von Dassow P, Armbrust KP, Boessenkool KP (2008) Phytoplankton calcification in a high-CO2 world. Science 320:336–340

    Article  PubMed  CAS  Google Scholar 

  • Jebram D (1973) Preliminary observations on the influences of food and other factors on the growth of Bryozoa. Kiel Meeresforsch 29:50–57

    Google Scholar 

  • Jompa J, McCoo LJ (2002) Effects of competition and herbivory on interactions between a hard coral and a brown alga. J Exp Mar Biol Ecol 271:25–39

    Article  Google Scholar 

  • Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impact of ocean acidification on coral reefs and other marine calcifiers: a case guide for future research. Report of a workshop held 18–20 April 2005. St. Petersburg, FL, sponsored by NSF, NOAQA, and US Geological Survey, pp 1–88

  • Kuklinski P, Taylor PD (2008) Are bryozoans adapted for living in the Arctic? In: Hageman S, Key M, Winston J (eds) Bryozoan studies 2007. Virginia Museum of Natural History, Memoir, Spec Pub, pp 101–110

  • Lidgard S (1985) Zooid and colony growth in encrusting cheilostome bryozoans. Palaeontology 28:255–291

    Google Scholar 

  • Lombardi C, Cocito S, Occhipinti-Ambrogi A, Hiscock K (2006) The influence of seawater temperature on zooid size and growth rate in Pentapora fascialis (Bryozoa: Cheilostomata). Mar Biol 149:1103–1109

    Article  Google Scholar 

  • Lombardi C, Rodolfo-Metalpa R, Cocito S, Gambi MC, Taylor PD (2011) Structural and geochemical alterations in the Mg calcite bryozoan Myriapora truncata under elevated seawater pCO2 simulating ocean acidification. Mar Ecol 32:211–221

    Article  Google Scholar 

  • Maluquer P (1985) Considerations on the fauna associated with colonies of Schizoporella errata of the Port of Mahon, Minorca, Balearic Islands, Spain. Publnes Dep Zool Univ Barcelona 11:23–28

    Google Scholar 

  • Martin S, Rodolfo-Metalpa R, Ransome E, Rowley S, Buia MC, Gattuso JP, Hall-Spencer J (2008) Effects of naturally acidified seawater on seagrass calcareous epibionts. Biol Lett 4:689–692

    Article  PubMed  Google Scholar 

  • McKinney FK, McKinney MJ (2002) Contrasting marine larval settlement patterns imply habitat-seeking behaviours in a fouling and a cryptic species (phylum Bryozoa). J Nat Hist 36:487–500

    Article  Google Scholar 

  • Moyano HI (1982) Magellanic Bryozoa: some ecological and zoogeographical aspects. Mar Biol 67:81–96

    Article  Google Scholar 

  • O’Donnell MJ, Todgham AE, Sewell MA, Hammond LM, Ruggiero K, Fangue NA, Zippay ML, Hofmann GE (2010) Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Mar Ecol Prog Ser 398:157–171

    Article  Google Scholar 

  • O’Dea A, Okamura B (2000) Intracolony variation in zooid size in cheilostome bryozoans as a new technique for investigatine palaeoseasonality. Palaeogeogr Palaeoclimatol Palaeoecol 162:319–332

    Article  Google Scholar 

  • Okamura B (1984) The effects of ambient flow velocity, colony size, and ustream colonies on the feeding success of Bryozoa. Bugula stolonifera Ryland, an arborescent species. J Exp Mar Biol Ecol 83:179–193

    Article  Google Scholar 

  • Okamura B, Bishop JD (1988) Zooid size in cheilostome bryozoans as an indicator of relative palaeotemperature. Palaeogeogr Palaeoclimatol Palaeoecol 66:145–152

    Article  Google Scholar 

  • Oren U, Benayahu Y, Lubinevsky H, Loya Y (2001) Colony integration during regeneration in the stony coral Favia favus. Ecology 82:802–813

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impacts on calcifying organisms. Nature 437:681–686

    Article  PubMed  CAS  Google Scholar 

  • Ries J, Cohen A, McCorkle D (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 12:1131–1134

    Article  Google Scholar 

  • Rittman A (1930) Geologie der Insel Ischia. Zeit Vulkanol 6:1–265

    Google Scholar 

  • Rodolfo-Metalpa R, Lombardi C, Cocito S, Hall-Spencer J, Gambi MC (2010) Effects of acidification and high temperature on the bryozoan Myriapora truncata at natural CO2 vents. Mar Ecol 31:447–456

    CAS  Google Scholar 

  • Rucker JB, Carver RE (1969) A survey of the carbonate mineralogy of cheilostome Bryozoa. J Paleontol 43:791–799

    Google Scholar 

  • Ryland JS (1965) Catalogue of main marine fouling organisms (found on ships coming into European waters). OECD 2:64–65

    Google Scholar 

  • Ryland JS, Porter JS (2005) Variation in zooid size in two west European species of Alcyonidium (Ctenostomatida). In: Moyano G, Hugo I, Cancino JM, Wyse Jackson PN (eds) Bryozoan studies. A. A. Balkema Publishers, Leiden, pp 271–279

    Google Scholar 

  • Sanchez JA, Lasker HR (2003) Patterns of morphological integration in marine modular organisms: supramodule organization in branching octocoral colonies. Proc R Soc Lond B 270(1528):2039–2044

    Article  Google Scholar 

  • Schopf TJM (1973) Ergonomics of polymorphism: its relation to the colony as the unit of natural selection in species of the phylum Ectoprocta. In: Boardman RS, Cheetham AH, Oliver WAJ (eds) Animal colonies. Stroudsburg, Pennsylvania, pp 247–294

    Google Scholar 

  • Silén L (1977) Polymorphism. In: Woolacott RM, Zimmer RL (eds) Biology of bryozoans. Academic Press, NY, pp 183–231

    Google Scholar 

  • Smith AM (2009) Bryozoans as southern sentinels of ocean acidification: a major role for a minor phylum. Mar Freshw Res 60:475–482

    Article  CAS  Google Scholar 

  • Smith AM, Key MM Jr, Gordon DP (2006) Skeletal mineralogy of bryozoans: taxonomic and temporal patterns. Earth Sci Rev 78:287–306

    Article  Google Scholar 

  • Sutherland JP (1978) Functional roles of Schizoporella and Styela in fouling community at Beaufort, NC. Ecology 59:257–264

    Article  Google Scholar 

  • Taylor PD, Kudryavtsev AB, Schopf JW (2008) Calcite and aragonite distributions in the skeletons of bimineralic bryozoans as revealed by Raman spectroscopy. Invert Biol 127:87–97

    Article  Google Scholar 

  • Tedesco D (1996) Chemical and isotopic investigation of fumarolic gases from Ischia Island (Southern Italy): evidence of magmatic and crustal contribution. J Vulcanol Geother Res 74:233–242

    Article  CAS  Google Scholar 

  • Tompsett S, Porter JS, Taylor PD (2009) Taxonomy of the fouling cheilostome bryozoans Schizoporella unicornis (Johnston) and Schizoporella errata (Waters). J Nat Hist 43:2227–2243

    Article  Google Scholar 

  • Widdicombe S, Dupont S, Thorndyke M (2010) Laboratory experiments and benthic mesocosm studies. In: Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (eds) Guide to best practices for ocean acidification research and data reporting, Luxembourg, pp 123–136

  • Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc R Soc B 275:1767–1773

    Article  PubMed  Google Scholar 

  • Wyatt ASJ, Hewitt CL, Walker DI, Ward TJ (2005) Marine introductions in the Shark Bay World heritage property, Western Australia: a preliminary assessment. Divers Distrib 11:33–44

    Article  Google Scholar 

  • Zabala M, Maluquer P (1988) Illustrated keys for the classification of Mediterranean Bryozoa. Treb Mus Zool Barcelona 4:1–294

    Google Scholar 

  • Zabin CJ, Obernolte R, Mackie JA, Gentry J, Harris L, Geller J (2010) A non-native bryozoan creates novel substrate on the mudflats in San Francisco Bay. Mar Ecol Progr Ser 412:129–139

    Article  Google Scholar 

  • Zucco C (2003) Evoluzione urbanstico territoriale delle isole Flegree (Ischia, Procida e Vivara). Acc Sc Lett Art Napoli, Mem Soc Sc Fis Mat 5:303–396

    Google Scholar 

Download references

Acknowledgments

M. C. Buia and the staff of the benthic ecology group of the Stazione Zoologica Anton Dohrn provided field and laboratory support and facilities. L. Howard (EMMA Unit, NHM, London) gave assistance and advice in SEM analyses. We are grateful to B. Pernet, S. Hageman, T. Bartolomaeus and three anonymous reviewer for their constructive comments. This project was partially financed by the VECTOR project. C. L. was funded by the Fondazione Banca del Monte di Lombardia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Lombardi.

Additional information

Communicated by T. Bartolomaeus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lombardi, C., Gambi, M.C., Vasapollo, C. et al. Skeletal alterations and polymorphism in a Mediterranean bryozoan at natural CO2 vents. Zoomorphology 130, 135–145 (2011). https://doi.org/10.1007/s00435-011-0127-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-011-0127-y

Keywords

Navigation