Skip to main content

Advertisement

Log in

Dihydrotestosterone promotes kidney cancer cell proliferation by activating the STAT5 pathway via androgen and glucocorticoid receptors

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Androgen receptors (ARs) are expressed on a variety of cell types, and AR signaling plays an important role in tumor development and progression in several cancers. This in vitro study evaluated the effect of dihydrotestosterone (DHT) on the proliferation of renal cell carcinoma (RCC) cells in relation to AR status.

Methods

Steroid hormone receptor expression was evaluated using RT-PCR and Western blotting. The effect of DHT on cell proliferation and STAT5 phosphorylation was evaluated in RCC cell lines (Caki-2, A498, and SN12C) and primary RCC cells using cell viability assays and Western blotting. ARs and glucocorticoid receptors (GRs) were knocked down with small interfering RNAs before assessing changes in cell proliferation and STAT5 activation.

Results

DHT treatment promoted cell proliferation and increased STAT5 phosphorylation regardless of AR status. The AR antagonist bicalutamide reduced kidney cancer cell proliferation, regardless of AR status. AR and GR knockdown blocked STAT5 activation and reduced cell proliferation in all RCC cell lines. In patient-derived primary cells, DHT enhanced cell proliferation and this effect was diminished by treatment with the AR antagonists bicalutamide and enzalutamide and the GR antagonist mifepristone.

Conclusion

DHT promotes cell proliferation through STAT5 activation in RCC cells, regardless of AR status. DHT appears to utilize the AR and GR pathways to activate STAT5, and the inhibition of AR and GR showed antitumor activity in RCC cells. These data suggest that targeting AR and GR may be a promising new approach to the treatment of RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander SP et al (2015) The concise guide to PHARMACOLOGY 2015/16: nuclear hormone receptors. Br J Pharmacol 172:5956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora VK et al (2013) Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155:1309–1322. https://doi.org/10.1016/j.cell.2013.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atsaves V et al (2017) PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia 31:1633

    Article  CAS  PubMed  Google Scholar 

  • Austin JW, Lu P, Majumder P, Ahmed R, Boss JM (2014) STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells. J Immunol 192(10):4876–4886. https://doi.org/10.4049/jimmunol.1302750

    Article  CAS  PubMed  Google Scholar 

  • Bianchi M, Meng C, Ivashkiv LB (2000) Inhibition of IL-2-induced Jak-STAT signaling by glucocorticoids. Proc Natl Acad Sci 97:9573–9578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  • Bromberg J, Darnell JE (2000) The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19:2468

    Article  CAS  PubMed  Google Scholar 

  • Buettner R, Mora LB, Jove R (2002) Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 8:945–954

    CAS  PubMed  Google Scholar 

  • Chang C, Lee S, Yeh S, Chang T (2014) Androgen receptor (AR) differential roles in hormone-related tumors including prostate, bladder, kidney, lung, breast and liver. Oncogene 33:3225

    Article  CAS  PubMed  Google Scholar 

  • Choueiri TK, Motzer RJ (2017) Systemic therapy for metastatic renal-cell carcinoma. N Engl J Med 376:354–366

    Article  CAS  PubMed  Google Scholar 

  • Choueiri TK et al (2016) Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol 17:917–927

    Article  CAS  PubMed  Google Scholar 

  • Ferbeyre G, Moriggl R (2011) The role of Stat5 transcription factors as tumor suppressors or oncogenes. Biochimica Et Biophysica Acta (BBA) Rev Cancer 1815:104–114

    Article  CAS  Google Scholar 

  • Ha Y-S, Lee GT, Modi P, Kwon YS, Ahn H, Kim W-J, Kim IY (2015) Increased expression of androgen receptor mRNA in human renal cell carcinoma cells is associated with poor prognosis in patients with localized renal cell carcinoma. J Urol 194:1441–1448

    Article  CAS  PubMed  Google Scholar 

  • He D et al (2014a) ASC-J9 suppresses renal cell carcinoma progression by targeting an androgen receptor-dependent HIF2α/VEGF signaling pathway. Can Res 74:4420–4430

    Article  CAS  Google Scholar 

  • He D et al (2014b) New therapy via targeting androgen receptor → HIF-2α → VEGF signals with ASC-J9® to suppress renal cell carcinoma progression. Cancer Res 2681:2013

    Google Scholar 

  • Hoang DT et al (2015) Inhibition of Stat5a/b enhances proteasomal degradation of androgen receptor liganded by antiandrogens in prostate cancer. Mol Cancer Ther 14:713–726

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi A, Oya M, Shimada T, Uchida A, Marumo K, Murai M (2002) Activation of signal transducer and activator of transcription 3 in renal cell carcinoma: a study of incidence and its association with pathological features and clinical outcome. J Urol 168:762–765

    Article  CAS  PubMed  Google Scholar 

  • Johnson DE, O’Keefe RA, Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15:234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonasch E, Gao J, Rathmell WK (2014) Renal cell carcinoma. BMJ 349:g4797

    Article  PubMed  PubMed Central  Google Scholar 

  • Langner C, Ratschek M, Rehak P, Schips L, Zigeuner R (2004) Steroid hormone receptor expression in renal cell carcinoma: an immunohistochemical analysis of 182 tumors. J Urol 171:611–614

    Article  CAS  PubMed  Google Scholar 

  • Lee GT et al (2017) Intracrine androgen biosynthesis in renal cell carcinoma. Br J Cancer 116:937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S et al (2013) Icaritin inhibits JAK/STAT3 signaling and growth of renal cell carcinoma. PLoS One 8:e81657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucca I, Klatte T, Fajkovic H, De Martino M, Shariat SF (2015) Gender differences in incidence and outcomes of urothelial and kidney cancer. Nat Rev Urol 12:585

    Article  CAS  PubMed  Google Scholar 

  • Motzer RJ et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolić M et al (2015) Possible involvement of glucocorticoids in 5α-dihydrotestosterone-induced PCOS-like metabolic disturbances in the rat visceral adipose tissue. Mol Cell Endocrinol 399:22–31

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30

    Article  PubMed  Google Scholar 

  • Song C, Jun S-Y, Hong J-H, Ahn H (2007) Transforming growth factor-β downregulates interleukin-2-induced phosphorylation of signal transducer and activator of transcription 5 in human renal cell carcinoma. J Cancer Res Clin Oncol 133:487–492

    Article  CAS  PubMed  Google Scholar 

  • Song C, Kim Y, Min GE, Ahn H (2014) Dihydrotestosterone enhances castration-resistant prostate cancer cell proliferation through STAT5 activation via glucocorticoid receptor pathway. Prostate 74:1240–1248

    Article  CAS  PubMed  Google Scholar 

  • Stöcklin E, Wissler M, Gouilleux F, Groner B (1996) Functional interactions between Stat5 and the glucocorticoid receptor. Nature 383:726

    Article  PubMed  Google Scholar 

  • Stone L (2014) Androgen receptor—a new target in renal cell carcinoma? Nat Rev Urol 11:425–426

    Article  PubMed  Google Scholar 

  • Tan S-H et al (2008) Transcription factor Stat5 synergizes with androgen receptor in prostate cancer cells. Can Res 68:236–248

    Article  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Sun Y, Tao W, Fei X, Chang C (2017) Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett 394:1–12

    Article  CAS  PubMed  Google Scholar 

  • Whitfield GK, Jurutka PW, Haussler CA, Haussler MR (1999) Steroid hormone receptors: evolution, ligands, and molecular basis of biologic function. J Cell Biochem 75:110–122

    Article  Google Scholar 

  • Wingelhofer B et al (2018) Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia 32(8):1713–1726. https://doi.org/10.1038/s41375-018-0117-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H (2009) Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. https://doi.org/10.1158/0008-5472.Can-08-4323

    Article  PubMed  PubMed Central  Google Scholar 

  • Yakirevich E et al (2011) Expression of the glucocorticoid receptor in renal cell neoplasms: an immunohistochemical and quantitative reverse transcriptase polymerase chain reaction study. Hum Pathol 42:1684–1692

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Lee H, Herrmann A, Buettner R, Jove R (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14:736

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zeng Y, Du W, Zhu J, Shen D, Liu Z, Huang J-A (2016) The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol 49:1360–1368

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Leppert JT, Peehl DM (2016) A protective role for androgen receptor in clear cell renal cell carcinoma based on mining TCGA data. PLoS One 11:e0146505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G et al (2014) The expression and evaluation of androgen receptor in human renal cell carcinoma. Urology 83:510.e519–510.e524

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant (W2014-012) from the Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanjong Ahn.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1010 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pak, S., Kim, W., Kim, Y. et al. Dihydrotestosterone promotes kidney cancer cell proliferation by activating the STAT5 pathway via androgen and glucocorticoid receptors. J Cancer Res Clin Oncol 145, 2293–2301 (2019). https://doi.org/10.1007/s00432-019-02993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-019-02993-1

Keywords

Navigation