Skip to main content
Log in

EZH2 mutations and promoter hypermethylation in childhood acute lymphoblastic leukemia

  • Original Article – Clinical Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Acute lymphoblastic leukemia (ALL) is the most common malignancy in children and young adults. The polycomb repressive complex 2 (PRC2) has been identified as one of the most frequently mutated epigenetic protein complexes in hematologic cancers. PRC2 acts as an epigenetic repressor through histone H3 lysine 27 trimethylation (H3K27me3), catalyzed by the histone methyltransferase enhancer of zeste homolog 2 protein (EZH2).

Methods

To study the prevalence and clinical impact of PRC2 aberrations in an unselected childhood ALL cohort (n = 152), we performed PRC2 mutational screenings by Sanger sequencing and promoter methylation analyses by quantitative pyrosequencing for the three PRC2 core component genes EZH2, suppressor of zeste 12 (SUZ12), and embryonic ectoderm development (EED). Targeted deep next-generation sequencing of 30 frequently mutated genes in leukemia was performed to search for cooperating mutations in patients harboring PRC2 aberrations. Finally, the functional consequence of EZH2 promoter hypermethylation on H3K27me3 was studied by Western blot analyses of primary cells.

Results

Loss-of-function EZH2 mutations were detected in 2/152 (1.3 %) patients with common-ALL and early T-cell precursor (ETP)-ALL, respectively. In one patient, targeted deep sequencing identified cooperating mutations in ASXL1 and TET2. EZH2 promoter hypermethylation was found in one patient with ETP-ALL which led to reduced H3K27me3. In comparison with healthy children, the EZH2 promoter was significantly higher methylated in T-ALL patients. No mutations or promoter methylation changes were identified for SUZ12 or EED genes, respectively.

Conclusions

Although PRC2 aberrations seem to be rare in childhood ALL, our findings indicate that EZH2 aberrations might contribute to the disease in specific cases. Hereby, EZH2 promoter hypermethylation might have functionally similar consequences as loss-of-function mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aricò M, Schrappe M, Hunger SP, Carroll WL, Conter V, Galimberti S, Manabe A, Saha V, Baruchel A, Vettenranta K, Horibe K, Benoit Y, Pieters R, Escherich G, Silverman LB, Pui CH, Valsecchi MG (2010) Clinical outcome of children with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol 28(31):4755–4761

    Article  PubMed  PubMed Central  Google Scholar 

  • Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, Ping B, Otte AP, Hung MC (2005) Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310(5746):306–310

    Article  CAS  PubMed  Google Scholar 

  • Chase A, Cross NC (2011) Aberrations of EZH2 in cancer. Clin Cancer Res 17(9):2613–2618

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7(10):e46688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidsson J, Lilljebjörn H, Andersson A, Veerla S, Heldrup J, Behrendtz M, Fioretos T, Johansson B (2009) The DNA methylome of pediatric acute lymphoblastic leukemia. Hum Mol Genet 18(21):4054–4065

    Article  CAS  PubMed  Google Scholar 

  • Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, Waghorn K, Zoi K, Ross FM, Reiter A, Hochhaus A, Drexler HG, Duncombe A, Cervantes F, Oscier D, Boultwood J, Grand FH, Cross NC (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42(8):722–726

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2007) Epigenetic gene silencing in cancer: the DNA hypermethylome. Human Mol Genet 16(Spec No 1):R50–R59

    Article  CAS  Google Scholar 

  • Harrison CJ (2009) Cytogenetics of paediatric and adolescent acute lymphoblastic leukaemia. Br J Haematol 144(2):147–156

    Article  PubMed  Google Scholar 

  • Hemmat M, Chen W, Anguiano A, Naggar ME, Racke FK, Jones D, Wang Y, Strom CM, Chang K, Boyar FZ (2014) Submicroscopic deletion of 5q involving tumor suppressor genes (CTNNA1, HSPA9) and copy neutral loss of heterozygosity associated with TET2 and EZH2 mutations in a case of MDS with normal chromosome and FISH results. Mol Cytogenet 7:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogan LE, Meyer JA, Yang J, Wang J, Wong N, Yang W, Condos G, Hunger SP, Raetz E, Saffery R, Relling MV, Bhojwani D, Morrison DJ, Carroll WL (2011) Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies. Blood 118(19):5218–5226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huether R, Dong L, Chen X, Wu G, Parker M, Wei L, Ma J, Edmonson MN, Hedlund EK, Rusch MC, Shurtleff SA, Mulder HL, Boggs K, Vadordaria B, Cheng J, Yergeau D, Song G, Becksfort J, Lemmon G, Weber C, Cai Z, Dang J, Walsh M, Gedman AL, Faber Z, Easton J, Gruber T, Kriwacki RW, Partridge JF, Ding L, Wilson RK, Mardis ER, Mullighan CG, Gilbertson RJ, Baker SJ, Zambetti G, Ellison DW, Zhang J, Downing JR (2014) The landscape of somatic mutations in epigenetic regulators across 1000 paediatric cancer genomes. Nat Commun 5:3630

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunger SP, Mullighan CG (2015) Acute Lymphoblastic Leukemia in Children. N Engl J Med 373(16):1541–1552

    Article  CAS  PubMed  Google Scholar 

  • Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M, Huh J, O’Keefe CL, Ganetzky R, McDevitt MA, Maciejewski JP (2009) Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 113(25):6403–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SN, Jankowska AM, Mahfouz R, Dunbar AJ, Sugimoto Y, Hosono N, Hu Z, Cheriyath V, Vatolin S, Przychodzen B, Reu FJ, Saunthararajah Y, O’Keefe C, Sekeres MA, List AF, Moliterno AR, McDevitt MA, Maciejewski JP, Makishima H (2013) Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia 27(6):1301–1309

    Article  CAS  PubMed  Google Scholar 

  • Kiladjian JJ, Massé A, Cassinat B, Mokrani H, Teyssandier I, le Couédic JP, Cambier N, Almire C, Pronier E, Casadevall N, Vainchenker W, Chomienne C, Delhommeau F, French Intergroup of Myeloproliferative Neoplasms (2010) Clonal analysis of erythroid progenitors suggests that pegylated interferon alpha-2a treatment targets JAK2V617F clones without affecting TET2 mutant cells. Leukemia 24(8):1519–1523

    Article  CAS  PubMed  Google Scholar 

  • Kroeze LI, Nikoloski G, da Silva-Coelho P, van Hoogen P, Stevens-Linders E, Kuiper RP, Schnittger S, Haferlach T, Pahl HL, van der Reijden BA, Jansen JH (2012) Genetic defects in PRC2 components other than EZH2 are not common in myeloid malignancies. Blood 119(5):1318–1319

    Article  CAS  PubMed  Google Scholar 

  • Kuiper RP, Schoenmakers EF, van Reijmersdal SV, Hehir-Kwa JY, van Kessel AG, van Leeuwen FN, Hoogerbrugge PM (2007) High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 21(6):1258–1266

    Article  CAS  PubMed  Google Scholar 

  • Kuzmichev A, Margueron R, Vaquero A, Preissner TS, Scher M, Kirmizis A, Ouyang X, Brockdorff N, Abate-Shen C, Farnham P, Reinberg D (2005) Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc Natl Acad Sci USA 102(6):1859–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langemeijer SM, Jansen JH, Hooijer J, van Hoogen P, Stevens-Linders E, Massop M, Waanders E, van Reijmersdal SV, Stevens-Kroef MJ, Zwaan CM, van den Heuvel-Eibrink MM, Sonneveld E, Hoogerbrugge PM, van Kessel AG, Kuiper RP (2011) TET2 mutations in childhood leukemia. Leukemia 25(1):189–192

    Article  CAS  PubMed  Google Scholar 

  • Makishima H, Jankowska AM, Tiu RV, Szpurka H, Sugimoto Y, Hu Z, Saunthararajah Y, Guinta K, Keddache MA, Putnam P, Sekeres MA, Moliterno AR, List AF, McDevitt MA, Maciejewski JP (2010) Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia 24(10):1799–1804

    Article  CAS  PubMed  Google Scholar 

  • Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, Girtman K, Mathew S, Ma J, Pounds SB, Su X, Pui CH, Relling MV, Evans WE, Shurtleff SA, Downing JR (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446(7137):758–764

    Article  CAS  PubMed  Google Scholar 

  • Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, Ma J, Liu W, Cheng C, Schulman BA, Harvey RC, Chen IM, Clifford RJ, Carroll WL, Reaman G, Bowman WP, Devidas M, Gerhard DS, Yang W, Relling MV, Shurtleff SA, Campana D, Borowitz MJ, Pui CH, Smith M, Hunger SP, Willman CL, Downing JR, Children’s Oncology Group (2009) Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 360(5):470–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musialik E, Bujko M, Kober P, Wypych A, Gawle-Krawczyk K, Matysiak M, Siedlecki JA (2015) Promoter methylation and expression levels of selected hematopoietic genes in pediatric B-cell acute lymphoblastic leukemia. Blood Res 50(1):26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tönnissen ER, van der Heijden A, Scheele TN, Vandenberghe P, de Witte T, van der Reijden BA, Jansen JH (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42(8):665–667

    Article  CAS  PubMed  Google Scholar 

  • Ntziachristos P, Tsirigos A, Van Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS, Ferres-Marco D, da Ros V, Tang Z, Siegle J, Asp P, Hadler M, Rigo I, De Keersmaecker K, Patel J, Huynh T, Utro F, Poglio S, Samon JB, Paietta E, Racevskis J, Rowe JM, Rabadan R, Levine RL, Brown S, Pflumio F, Dominguez M, Ferrando A, Aifantis I (2012) Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med 18(2):298–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A, Wysocka J (2009) Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139(7):1290–1302

    Article  PubMed  PubMed Central  Google Scholar 

  • Pui CH, Carroll WL, Meshinchi S, Arceci RJ (2011) Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 29(5):551–565

    Article  PubMed  Google Scholar 

  • Pui CH, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, Vora A, Baruchel A, Silverman LB, Schmiegelow K, Escherich G, Horibe K, Benoit YC, Izraeli S, Yeoh AE, Liang DC, Downing JR, Evans WE, Relling MV, Mullighan CG (2015) Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol 33(27):2938–2948

    Article  PubMed  Google Scholar 

  • Rinke J, Schäfer V, Schmidt M, Ziermann J, Kohlmann A, Hochhaus A, Ernst T (2013) Genotyping of 25 leukemia-associated genes in a single work flow by next-generation sequencing technology with low amounts of input template DNA. Clin Chem 59(8):1238–1250

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Rinke J, Schäfer V, Schnittger S, Kohlmann A, Obstfelder E, Kunert C, Ziermann J, Winkelmann N, Eigendorff E, Haferlach T, Haferlach C, Hochhaus A, Ernst T (2014) Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status. Leukemia 28(12):2292–2299

    Article  CAS  PubMed  Google Scholar 

  • Score J, Hidalgo-Curtis C, Jones AV, Winkelmann N, Skinner A, Ward D, Zoi K, Ernst T, Stegelmann F, Döhner K, Chase A, Cross NC (2012) Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. Blood 119(5):1208–1213

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Kim W, Fujiwara Y, Simon MD, Liu Y, Mysliwiec MR, Yuan GC, Lee Y, Orkin SH (2009) Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 139(7):1303–1314

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon C, Chagraoui J, Krosl J, Gendron P, Wilhelm B, Lemieux S, Boucher G, Chagnon P, Drouin S, Lambert R, Rondeau C, Bilodeau A, Lavallée S, Sauvageau M, Hébert J, Sauvageau G (2012) A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes Dev 26(7):651–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Takeuchi S, Hofmann WK, Ikezoe T, van Dongen JJ, Szczepański T, Bartram CR, Yoshino N, Taguchi H, Koeffler HP (2006) Aberrant methylation in promoter-associated CpG islands of multiple genes in acute lymphoblastic leukemia. Leuk Res 30(1):98–102

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, Easton J, Chen X, Wang J, Rusch M, Lu C, Chen SC, Wei L, Collins-Underwood JR, Ma J, Roberts KG, Pounds SB, Ulyanov A, Becksfort J, Gupta P, Huether R, Kriwacki RW, Parker M, McGoldrick DJ, Zhao D, Alford D, Espy S, Bobba KC, Song G, Pei D, Cheng C, Roberts S, Barbato MI, Campana D, Coustan-Smith E, Shurtleff SA, Raimondi SC, Kleppe M, Cools J, Shimano KA, Hermiston ML, Doulatov S, Eppert K, Laurenti E, Notta F, Dick JE, Basso G, Hunger SP, Loh ML, Devidas M, Wood B, Winter S, Dunsmore KP, Fulton RS, Fulton LL, Hong X, Harris CC, Dooling DJ, Ochoa K, Johnson KJ, Obenauer JC, Evans WE, Pui CH, Naeve CW, Ley TJ, Mardis ER, Wilson RK, Downing JR, Mullighan CG (2012) The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481(7380):157–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The excellent technical assistance of Anja Waldau and Susan Wittig is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ernst.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all children and/or their parents included in the study.

Additional information

Bernd Gruhn and Thomas Ernst have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schäfer, V., Ernst, J., Rinke, J. et al. EZH2 mutations and promoter hypermethylation in childhood acute lymphoblastic leukemia. J Cancer Res Clin Oncol 142, 1641–1650 (2016). https://doi.org/10.1007/s00432-016-2174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-016-2174-8

Keywords

Navigation