Skip to main content

Advertisement

Log in

Influence of L1-CAM expression of breast cancer cells on adhesion to endothelial cells

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Expression of the adhesion molecule L1-CAM (L1) has been shown to correlate with early recurrence in breast cancer. Here, we investigated whether L1-CAM expression of breast cancer cells might influence adherence to human pulmonary microvascular endothelial cells (HPMEC) and thus promote metastasis.

Methods

MDA-MB231-Fra2 breast cancer cells that express high levels of L1-CAM (L1high cells) were stably transfected to generate clones with strong L1-CAM downregulation. Adhesion to activated HPMEC was studied in dynamic cell flow and static assays. Potential binding partners on endothelial cells were identified by blocking experiments and adhesion assays after coating of the flow channels with recombinant proteins.

Results

Adhesion of L1high cells to activated HPMEC was significantly higher compared to L1low clones under flow conditions. Blocking experiments and adhesion assays with recombinant proteins identified activated leucocyte cell adhesion molecule (ALCAM) or L1 itself, but not ICAM-1, as potential binding partners on endothelial cells. E-selectin blocking antibodies strongly diminished the adherence of breast cancer cells irrespective of their L1-CAM expression.

Conclusions

Our experiments indicate that L1-CAM expression on breast cancer cells can promote adherence to activated endothelial cells by binding to endothelial L1-CAM or ALCAM. This mechanism might lead to increased metastasis and a poor prognosis in L1-CAM-positive carcinomas in vivo. Therefore, L1-CAM might be a suitable therapeutic target in breast cancers with a high L1-CAM expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bao S, Wu Q et al (2008) Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68:6043–6048

    Article  PubMed  CAS  Google Scholar 

  • Barthel SR, Gavino JD et al (2007) Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets 11:1473–1491

    Article  PubMed  CAS  Google Scholar 

  • Brummendorf T, Kenwrick S et al (1998) Neural cell recognition molecule L1: from cell biology to human hereditary brain malformations. Curr Opin Neurobiol 8:87–97

    Article  PubMed  CAS  Google Scholar 

  • Buhusi M, Demyanenko GP et al (2009) ALCAM regulates mediolateral retinotopic mapping in the superior colliculus. J Neurosci 29:15630–15641

    Article  PubMed  CAS  Google Scholar 

  • Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132

    Article  PubMed  CAS  Google Scholar 

  • Felding-Habermann B, Silletti S et al (1997) A single immunoglobulin-like domain of the human neural cell adhesion molecule L1 supports adhesion by multiple vascular and platelet integrins. J Cell Biol 139:1567–1581

    Article  PubMed  CAS  Google Scholar 

  • Gast D, Riedle S et al (2008) The cytoplasmic part of L1-CAM controls growth and gene expression in human tumors that is reversed by therapeutic antibodies. Oncogene 27:1281–1289

    Article  PubMed  CAS  Google Scholar 

  • Gavert N, Conacci-Sorrell M et al (2005) L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol 168:633–642

    Article  PubMed  CAS  Google Scholar 

  • Herron LR, Hill M et al (2009) The intracellular interactions of the L1 family of cell adhesion molecules. Biochem J 419:519–531

    Article  PubMed  CAS  Google Scholar 

  • Hubbe M, Kowitz A et al (1993) L1 adhesion molecule on mouse leukocytes: regulation and involvement in endothelial cell binding. Eur J Immunol 23:2927–2931

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Quertermous T (2004) Molecular isolation and characterization of a soluble isoform of activated leukocyte cell adhesion molecule that modulates endothelial cell function. J Biol Chem 279:55315–55323

    Article  PubMed  CAS  Google Scholar 

  • Issa Y, Nummer D et al (2009) Enhanced L1CAM expression on pancreatic tumor endothelium mediates selective tumor cell transmigration. J Mol Med (Berl) 87:99–112

    Article  CAS  Google Scholar 

  • Jemal A, Center MM et al (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 19:1893–1907

    Article  PubMed  Google Scholar 

  • Koutsiaris AG, Tachmitzi SV et al (2007) Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo. Biorheology 44:375–386

    PubMed  Google Scholar 

  • Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873

    Article  PubMed  CAS  Google Scholar 

  • Lemmon V, Farr KL et al (1989) L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron 2:1597–1603

    Article  PubMed  CAS  Google Scholar 

  • Li YL, Wu GZ et al (2008) Cell surface sialylation and fucosylation are regulated by L1 via phospholipase Cgamma and cooperate to modulate neurite outgrowth, cell survival and migration. PLoS ONE 3:e3841

    Article  PubMed  Google Scholar 

  • Maddaluno L, Verbrugge SE et al (2009) The adhesion molecule L1 regulates transendothelial migration and trafficking of dendritic cells. J Exp Med 206:623–635

    Article  PubMed  CAS  Google Scholar 

  • Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10:19–26

    Article  PubMed  CAS  Google Scholar 

  • Maretzky T, Schulte M et al (2005) L1 is sequentially processed by two differently activated metalloproteases and presenilin/gamma-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth. Mol Cell Biol 25:9040–9053

    Article  PubMed  CAS  Google Scholar 

  • Mechtersheimer S, Gutwein P et al (2001) Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 155:661–673

    Article  PubMed  CAS  Google Scholar 

  • Merkle CJ, Torres BJ et al (2005) In vitro age-related responses of endothelial cells to breast cancer cell addition. Cancer Detect Prev 29:518–527

    Article  PubMed  CAS  Google Scholar 

  • Milde-Langosch K, Bamberger AM et al (2001) Expression of cell-cycle regulatory proteins in endometrial carcinomas: correlations with hormone receptor status and clinicopathologic parameters. J Cancer Res Clin Oncol 127:537–544

    Article  PubMed  CAS  Google Scholar 

  • Miles FL, Pruitt FL et al (2008) Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 25:305–324

    Article  PubMed  CAS  Google Scholar 

  • Richter U, Schroder C et al (2011) Adhesion of small cell lung cancer cells to E- and P-Selectin under physiological flow conditions: implications for metastasis formation. Histochem Cell Biol 135:499–512

    Article  PubMed  CAS  Google Scholar 

  • Ruppert M, Aigner S et al (1995) The L1 adhesion molecule is a cellular ligand for VLA-5. J Cell Biol 131:1881–1891

    Article  PubMed  CAS  Google Scholar 

  • Schäfer MK, Altevogt P (2010) L1CAM malfunction in the nervous system and human carcinomas. Cell Mol Life Sci 67:2425–2437

    Article  PubMed  Google Scholar 

  • Schmid RS, Maness PF (2008) L1 and NCAM adhesion molecules as signaling coreceptors in neuronal migration and process outgrowth. Curr Opin Neurobiol 18:245–250

    Article  PubMed  CAS  Google Scholar 

  • Schröder C, Schumacher U et al (2009) Expression and prognostic value of L1-CAM in breast cancer. Oncol Rep 22:1109–1117

    PubMed  Google Scholar 

  • Schröder C, Schumacher U et al (2010) The transcription factor Fra-2 promotes mammary tumour progression by changing the adhesive properties of breast cancer cells. Eur J Cancer 46:1650–1660

    Article  PubMed  Google Scholar 

  • Sheikh S, Rainger GE et al (2003) Exposure to fluid shear stress modulates the ability of endothelial cells to recruit neutrophils in response to tumor necrosis factor-alpha: a basis for local variations in vascular sensitivity to inflammation. Blood 102:2828–2834

    Article  PubMed  CAS  Google Scholar 

  • Shirure VS, Henson KA et al (2011) Gangliosides expressed on breast cancer cells are E-selectin ligands. Biochem Biophys Res Commun 406:423–429

    Google Scholar 

  • Shtutman M, Levina E et al (2006) Cell adhesion molecule L1 disrupts E-cadherin-containing adherens junctions and increases scattering and motility of MCF7 breast carcinoma cells. Cancer Res 66:11370–11380

    Article  PubMed  CAS  Google Scholar 

  • Siesser PF, Maness PF (2009) L1 cell adhesion molecules as regulators of tumor cell invasiveness. Cell Adh Migr 3:275–277

    Article  PubMed  Google Scholar 

  • Strell C, Entschladen F (2008) Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal 6:10

    Article  PubMed  Google Scholar 

  • Strell C, Lang K et al (2007) Surface molecules regulating rolling and adhesion to endothelium of neutrophil granulocytes and MDA-MB-468 breast carcinoma cells and their interaction. Cell Mol Life Sci 64:3306–3316

    Article  PubMed  CAS  Google Scholar 

  • Sundd P, Pospieszalska MK et al (2011) Biomechanics of leukocyte rolling. Biorheology 48:1–35

    PubMed  Google Scholar 

  • ten Kate M, Hofland LJ et al (2004) Influence of proinflammatory cytokines on the adhesion of human colon carcinoma cells to lung microvascular endothelium. Int J Cancer 112:943–950

    Article  PubMed  Google Scholar 

  • van Buul JD, van Rijssel J et al (2010) ICAM-1 clustering on endothelial cells recruits VCAM-1. J Biomed Biotechnol 2010:120328

    PubMed  Google Scholar 

  • Voura EB, Ramjeesingh RA et al (2001) Involvement of integrin alpha(v)beta(3) and cell adhesion molecule L1 in transendothelial migration of melanoma cells. Mol Biol Cell 12:2699–2710

    PubMed  CAS  Google Scholar 

  • Weidle UH, Eggle D et al (2010) ALCAM/CD166: cancer-related issues. Cancer Genomics Proteomics 7:231–243

    PubMed  CAS  Google Scholar 

  • Wittchen ES (2009) Endothelial signaling in paracellular and transcellular leukocyte transmigration. Front Biosci 14:2522–2545

    Article  PubMed  CAS  Google Scholar 

  • Wolterink S, Moldenhauer G et al (2010) Therapeutic antibodies to human L1CAM: functional characterization and application in a mouse model for ovarian carcinoma. Cancer Res 70:2504–2515

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Adla S et al (2009) Stimulation of glioma cell motility by expression, proteolysis, and release of the L1 neural cell recognition molecule. Cancer Cell Int 9:27

    Article  PubMed  Google Scholar 

  • Zachlederova M, Jarolim P (2006) The dynamics of gene expression in human lung microvascular endothelial cells after stimulation with inflammatory cytokines. Physiol Res 55:39–47

    PubMed  CAS  Google Scholar 

  • Zen K, Liu DQ et al (2008) CD44v4 is a major E-selectin ligand that mediates breast cancer cell transendothelial migration. PLoS ONE 3:e1826

    Article  PubMed  Google Scholar 

  • Zhang H, Wong CC et al (2012) HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene 31:1757–1770

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Sibyll Hein, Maila Rossberg and Katrin Beck for excellent technical assistance.

Conflict of interest

The authors state that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Milde-Langosch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dippel, V., Milde-Langosch, K., Wicklein, D. et al. Influence of L1-CAM expression of breast cancer cells on adhesion to endothelial cells. J Cancer Res Clin Oncol 139, 107–121 (2013). https://doi.org/10.1007/s00432-012-1306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-012-1306-z

Keywords

Navigation