Skip to main content

Advertisement

Log in

A potential probe set of fluorescence in situ hybridization for detection of lung cancer in bronchial brushing specimens

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The study aims to find candidate probes of fluorescence in situ hybridization (FISH) for detection of lung cancer with bronchial brushings and to evaluate whether the accuracy of diagnosing lung cancer by cytological deviant and genetic abnormalities is greater than that of cytology alone.

Methods

Centromeric enumeration probes (CEPs) for chromosomes 2, 3, 6, 7, 8, 9, 11, 12, and 17 were analyzed using FISH in 74 surgical resection tissues, 32 operative margin tissues without tumor involvement of lung cancer, and 174 bronchial brushings.

Results

The aneuploidy rates of the tested probes were 61.7, 89.1, 80.0, 92.7, 65.0, 70.4, 66.7, 71.8, 68.9 % in tumor tissues, and 29.3, 58.9, 33.3, 69.6, 67.0, 40.3, 38.0, 49.3, 35.1 % in bronchial brushings. The combination of cytology and FISH using the three-probe set for chromosomes 3+7+8 significantly improved the sensitivity of bronchial brushing examination for lung cancer detection (P = 0.00003), especially squamous cell carcinoma (SCC), which increased from 78.0 to 98.2 %. The specificity of the 3+7+8 probe set was 94.6 %. Moreover, a high aneuploidy rate of the probe set in bronchial brushings was detected more often in SCCs (P = 0.029) and late-stage non-small-cell lung cancer (NSCLC) (P = 0.044). Kaplan–Meier curves indicated that adenocarcinoma (ADC) patients with high aneuploidy rate of CEP3 in tissue samples exhibited poorer overall survival (P = 0.016).

Conclusions

FISH performed on cytology preparations is useful for confirmation of cancer diagnosis. The three-probe set, 3+7+8, has potential value for the detection of SCCs in bronchial brushings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADC:

Adenocarcinoma

CEP:

Centromeric enumeration probes

FISH:

Fluorescence in situ hybridization

NSCLC:

Non-small-cell lung cancer

OS:

Overall survival

SCC:

Squamous cell carcinoma

SCLC:

Small cell lung cancer

References

  • Agarwal M, Brahmanday G, Chmielewski GW, Welsh RJ, Ravikrishnan KP (2010) Age, tumor size, type of surgery, and gender predict survival in early stage (stage I and II) non-small cell lung cancer after surgical resection. Lung Cancer 68(3):398–402

    Article  PubMed  Google Scholar 

  • Aviel-Ronen S, Coe BP, Lau SK, da Cunha Santos G, Zhu CQ, Strumpf D, Jurisica I, Lam WL, Tsao MS (2008) Genomic markers for malignant progression in pulmonary adenocarcinoma with bronchioloalveolar features. Proc Natl Acad Sci U S A 105(29):10155–10160

    Article  PubMed  CAS  Google Scholar 

  • Balsara BR, Testa JR (2002) Chromosomal imbalances in human lung cancer. Oncogene 21(45):6877–6883

    Article  PubMed  CAS  Google Scholar 

  • Barkan GA, Caraway NP, Jiang F, Zaidi TM, Fernandez R, Vaporcyin A, Morice R, Zhou X, Bekele BN, Katz RL (2005) Comparison of molecular abnormalities in bronchial brushings and tumor touch preparations. Cancer 105(1):35–43

    Article  PubMed  CAS  Google Scholar 

  • Berrieman HK, Ashman JN, Cowen ME, Greenman J, Lind MJ, Cawkwell L (2004) Chromosomal analysis of non-small-cell lung cancer by multicolour fluorescent in situ hybridisation. Br J Cancer 90(4):900–905

    Article  PubMed  CAS  Google Scholar 

  • Bubendorf L, Muller P, Joos L, Grilli B, Vogel S, Herzog M, Barascud A, Feichter G, Dalquen P, Tamm M (2005) Multitarget FISH analysis in the diagnosis of lung cancer. Am J Clin Pathol 123(4):516–523

    Article  PubMed  Google Scholar 

  • Choma D, Daures JP, Quantin X, Pujol JL (2001) Aneuploidy and prognosis of non-small-cell lung cancer: a meta-analysis of published data. Br J Cancer 85(1):14–22

    Article  PubMed  CAS  Google Scholar 

  • Fan YB, Ye L, Wang TY, Wu GP (2010) Correlation between morphology and human telomerase gene amplification in bronchial brushing cells for the diagnosis of lung cancer. Diagn Cytopathol 38(6):402–406

    Article  PubMed  Google Scholar 

  • Fox JL, Hsu PH, Legator MS, Morrison LE, Seelig SA (1995) Fluorescence in situ hybridization: powerful molecular tool for cancer prognosis. Clin Chem 41(11):1554–1559

    PubMed  CAS  Google Scholar 

  • Goeze A, Schluns K, Wolf G, Thasler Z, Petersen S, Petersen I (2002) Chromosomal imbalances of primary and metastatic lung adenocarcinomas. J Pathol 196(1):8–16

    Article  PubMed  Google Scholar 

  • Halling KC, Kipp BR (2007) Fluorescence in situ hybridization in diagnostic cytology. Hum Pathol 38(8):1137–1144

    Article  PubMed  CAS  Google Scholar 

  • Halling KC, Rickman OB, Kipp BR, Harwood AR, Doerr CH, Jett JR (2006) A comparison of cytology and fluorescence in situ hybridization for the detection of lung cancer in bronchoscopic specimens. Chest 130(3):694–701

    Article  PubMed  Google Scholar 

  • Li R, Liu Z, Fan T, Jiang F (2006) A novel multiple FISH array for the detection of genetic aberrations in cancer. Lab Invest 86(6):619–627

    PubMed  CAS  Google Scholar 

  • Lockwood WW, Chari R, Coe BP, Girard L, Macaulay C, Lam S, Gazdar AF, Minna JD, Lam WL (2008) DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene 27(33):4615–4624

    Article  PubMed  CAS  Google Scholar 

  • Mazzone P, Jain P, Arroliga AC, Matthay RA (2002) Bronchoscopy and needle biopsy techniques for diagnosis and staging of lung cancer. Clin Chest Med 23(1):137–158

    Article  PubMed  Google Scholar 

  • Nakamura H, Aute I, Kawasaki N, Taguchi M, Ohira T, Kato H (2005) Quantitative detection of lung cancer cells by fluorescence in situ hybridization: comparison with conventional cytology. Chest 128(2):906–911

    Article  PubMed  Google Scholar 

  • Panani AD, Roussos C (2006) Cytogenetic and molecular aspects of lung cancer. Cancer Lett 239(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Petersen I (2011) The morphological and molecular diagnosis of lung cancer. Dtsch Arztebl Int 108(31–32):525–531

    PubMed  Google Scholar 

  • Petersen I, Bujard M, Petersen S, Wolf G, Goeze A, Schwendel A, Langreck H, Gellert K, Reichel M, Just K, du Manoir S, Cremer T, Dietel M, Ried T (1997a) Patterns of chromosomal imbalances in adenocarcinoma and squamous cell carcinoma of the lung. Cancer Res 57(12):2331–2335

    PubMed  CAS  Google Scholar 

  • Petersen I, Langreck H, Wolf G, Schwendel A, Psille R, Vogt P, Reichel MB, Ried T, Dietel M (1997b) Small-cell lung cancer is characterized by a high incidence of deletions on chromosomes 3p, 4q, 5q, 10q, 13q and 17p. Br J Cancer 75(1):79–86

    Article  PubMed  CAS  Google Scholar 

  • Petersen S, Aninat-Meyer M, Schluns K, Gellert K, Dietel M, Petersen I (2000) Chromosomal alterations in the clonal evolution to the metastatic stage of squamous cell carcinomas of the lung. Br J Cancer 82(1):65–73

    Article  PubMed  CAS  Google Scholar 

  • Ried T, Petersen I, Holtgreve-Grez H, Speicher MR, Schrock E, du Manoir S, Cremer T (1994) Mapping of multiple DNA gains and losses in primary small cell lung carcinomas by comparative genomic hybridization. Cancer Res 54(7):1801–1806

    PubMed  CAS  Google Scholar 

  • Savic S, Glatz K, Schoenegg R, Spieler P, Feichter G, Tamm M, Bubendorf L (2006) Multitarget fluorescence in situ hybridization elucidates equivocal lung cytology. Chest 129(6):1629–1635

    Article  PubMed  Google Scholar 

  • Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61(4):212–236

    Article  PubMed  Google Scholar 

  • Sokolova IA, Bubendorf L, O’Hare A, Legator MS, Jacobson KK, Grilli BSB, Dalquen P, Halling KC, Tamm M, Seelig SA, Morrison LE (2002) A fluorescence in situ hybridization-based assay for improved detection of lung cancer cells in bronchial washing specimens. Cancer 96(5):306–315

    Article  PubMed  Google Scholar 

  • Tonon G, Wong KK, Maulik G, Brennan C, Feng B, Zhang Y, Khatry DB, Protopopov A, You MJ, Aguirre AJ, Martin ES, Yang Z, Ji H, Chin L, Depinho RA (2005) High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci U S A 102(27):9625–9630

    Article  PubMed  CAS  Google Scholar 

  • Varella-Garcia M, Kittelson J, Schulte AP, Vu KO, Wolf HJ, Zeng C, Hirsch FR, Byers T, Kennedy T, Miller YE, Keith RL, Franklin WA (2004) Multi-target interphase fluorescence in situ hybridization assay increases sensitivity of sputum cytology as a predictor of lung cancer. Cancer Detect Prev 28(4):244–251

    Article  PubMed  CAS  Google Scholar 

  • Varella-Garcia M, Chen L, Powell RL, Hirsch FR, Kennedy TC, Keith R, Miller YE, Mitchell JD, Franklin WA (2007) Spectral karyotyping detects chromosome damage in bronchial cells of smokers and patients with cancer. Am J Respir Crit Care Med 176(5):505–512

    Article  PubMed  CAS  Google Scholar 

  • Wen C, Dehnel T (2011) China wrestles with lung cancer. Lancet Oncol 12(1):15

    Article  PubMed  Google Scholar 

  • Yendamuri S, Vaporciyan AA, Zaidi T, Feng L, Fernandez R, Bekele NB, Hofstetter WL, Jiang F, Mehran RJ, Rice DC, Spitz MR, Swisher SG, Walsh GL, Roth JA, Katz RL (2008) 3p22.1 and 10q22.3 deletions detected by fluorescence in situ hybridization (FISH): a potential new tool for early detection of non-small cell lung Cancer (NSCLC). J Thorac Oncol 3(9):979–984

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Special Public Health Fund of China (200902002-4) and Chinese Hi-Tech R&D Program Grant (2012AA02A502 and 2011YQ17006710).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Rong Wang.

Additional information

Yi-Zhen Liu and Zhen Wang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YZ., Wang, Z., Fang, LL. et al. A potential probe set of fluorescence in situ hybridization for detection of lung cancer in bronchial brushing specimens. J Cancer Res Clin Oncol 138, 1541–1549 (2012). https://doi.org/10.1007/s00432-012-1232-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-012-1232-0

Keywords

Navigation