Skip to main content

Advertisement

Log in

The roles of bioactive sphingolipids in resveratrol-induced apoptosis in HL60 acute myeloid leukemia cells

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Acute promyelocytic leukemia results from a translocation between 15 and 17 chromosomes that produce PML/RARα fusion protein. PML/RARα inhibits differentiation of myeloid precursor cells at stem cell level. Resveratrol is a phytoalexin that exerts cytotoxic effects on cancer cells. Ceramides have crucial roles in cell growth, proliferation, differentiation, drug resistance, and apoptosis. In this study, we examined the possible cytotoxic effects of resveratrol on acute myeloid leukemia cells and determined the roles of ceramide-metabolizing genes in resveratrol-induced apoptosis, in addition to investigating the possibility of increasing the sensitivity of HL60 cells to resveratrol by manipulating sphingolipids.

Methods

Cytotoxic effects of resveratrol, C8:ceramide, PDMP, and SK-1 inhibitor were determined by XTT cell proliferation assay. Changes in caspase-3 enzyme activity and mitochondrial membrane potential (MMP) were measured using caspase-3 colorimetric assay and JC-1 MMP detection kit. Expression levels of ceramide-metabolizing genes were examined by RT-PCR.

Results

The results revealed that manipulations of ceramide metabolism toward generation or accumulation of apoptotic ceramides increased apoptotic effects of resveratrol in HL60 cells, synergistically. More importantly, gene expression analyses revealed that resveratrol-induced apoptosis via increasing expression levels of ceramide-generating genes and decreasing expression levels of antiapoptotic sphingosine kinase-1 and glucosylceramide synthase genes.

Conclusion

These results showed for the first time that increasing intracellular levels of ceramides by biochemical approaches has also increased sensitivity of HL60 cells to resveratrol. We also showed that resveratrol induces apoptosis through manipulating ceramide-metabolizing genes that resulted in the accumulation of ceramides in HL60 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcalay M, Zangrilli D, Fagioli M, Pandolfi PP, Mencarelli A, Lo Coco F, Biondi A, Grignani F, Pelicci PG (1992) Expression pattern of the RAR alpha-PML fusion gene in acute promyelocytic leukemia. Proc Natl Acad Sci USA 89:4840–4844

    Article  CAS  PubMed  Google Scholar 

  • Baran Y, Salas A, Senkal CE, Gunduz U, Bielawski J, Obeid LM, Ogretmen B (2007) Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. J Biol Chem 282:10922–10934

    Article  CAS  PubMed  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  • Bielawska A, Bielawski J, Szulc ZM, Mayroo N, Liu X, Bai A, Elojeimy S, Rembiesa B, Pierce J, Norris JS, Hannun YA (2008) Novel analogs of D-e-MAPP and B13. Part 2: signature effects on bioactive sphingolipids. Bioorg Med Chem 16:1032–1045

    Article  CAS  PubMed  Google Scholar 

  • Bose R, Kolesnick R (2000) Measurement of ceramide synthase activity. Methods Enzymol 322:378–382

    Article  CAS  PubMed  Google Scholar 

  • Crawford KW, Bittman R, Chun J, Byun HS, Bowen WD (2003) Novel ceramide analogues display selective cytotoxicity in drug-resistant breast tumor cell lines compared to normal breast epithelial cells. Cell Mol Biol (Noisy-le-grand) 49:1017–1023

    CAS  Google Scholar 

  • Dagan A, Wang C, Fibach E, Gatt S (2003) Synthetic, non-natural sphingolipid analogs inhibit the biosynthesis of cellular sphingolipids, elevate ceramide and induce apoptotic cell death. Biochim Biophys Acta 1633:161–169

    CAS  PubMed  Google Scholar 

  • D'Mello NP, Childress AM, Franklin DS, Kale SP, Pinswasdi C, Jazwinski SM (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269:15451–15459

    PubMed  Google Scholar 

  • French KJ, Upson JJ, Keller SN, Zhuang Y, Yun JK, Smith CD (2006) Antitumor activity of sphingosine kinase inhibitors. J Pharmacol Exp Ther 318:596–603

    Article  CAS  PubMed  Google Scholar 

  • Gouaze-Andersson V, Cabot MC (2006) Glycosphingolipids and drug resistance. Biochim Biophys Acta 1758:2096–2103

    Article  CAS  PubMed  Google Scholar 

  • Gucluler G, Baran Y (2009) Docetaxel enhances the cytotoxic effects of imatinib on Philadelphia positive human chronic myeloid leukemia cells. Hematology 14:139–144

    Article  CAS  PubMed  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Zhang W, Sanderson BJ (2008) Selective growth inhibition of human leukemia and human lymphoblastoid cells by resveratrol via cell cycle arrest and apoptosis induction. J Agric Food Chem 56:7572–7577

    Article  CAS  PubMed  Google Scholar 

  • Lengfelder E, Reichert A, Schoch C, Haase D, Haferlach T, Löffler H, Staib P, Heyll A, Seifarth W, Saussele S, Fonatsch C, Gassmann W, Ludwig WD, Hochhaus A, Beelen D, Aul C, Sauerland MC, Heinecke A, Hehlmann R, Wörmann B, Hiddemann W, Büchner T (2000) Double induction strategy including high dose cytarabine in combination with all-trans retinoic acid: effects in patients with newly diagnosed acute promyelocytic leukemia. Leukemia 14:1362–1370

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang LL (2008) Mifepristone modulates glucosylceramide synthase expression and reverse multidrug resistance in ovarian cancer cells. Nan Fang Yi Ke Da Xue Xue Bao 28:1727–1730

    CAS  PubMed  Google Scholar 

  • Liu YY, Han TY, Giuliano AE, Cabot MC (1999) Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J Biol Chem 274:1140–1146

    Article  CAS  PubMed  Google Scholar 

  • Lo-Coco F, Ammatuna E (2006) The biology of acute promyelocytic leukemia and its impact on diagnosis and treatment. Hematol Am Soc Hematol Educ Program 156–161:514

    Google Scholar 

  • Mizutani Y, Kihara A, Igarashi Y (2005) Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J 390:263–271

    Article  CAS  PubMed  Google Scholar 

  • Morjani H, Aouali N, Belhoussine R, Veldman RJ, Levade T, Manfait M (2001) Elevation of glucosylceramide in multidrug-resistant cancer cells and accumulation in cytoplasmic droplets. Int J Cancer 94:157–165

    Article  CAS  PubMed  Google Scholar 

  • Ogretmen B (2006) Sphingolipids in cancer: regulation of pathogenesis and therapy. FEBS Lett 580:5467–5476

    Article  CAS  PubMed  Google Scholar 

  • Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616

    Article  CAS  PubMed  Google Scholar 

  • Perry DK, Carton J, Shah AK, Meredith F, Uhlinger DJ, Hannun YA (2000) Serine palmitoyltransferase regulates de novo ceramide generation during etoposide-induced apoptosis. J Biol Chem 275:9078–9084

    Article  CAS  PubMed  Google Scholar 

  • Pewzner-Jung Y, Ben-Dor S, Futerman AH (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: insights into the regulation of ceramide synthesis. J Biol Chem 281:25001–25005

    Article  CAS  PubMed  Google Scholar 

  • Phillips DC, Hunt JT, Moneypenny CG, Maclean KH, McKenzie PP, Harris LC, Houghton JA (2007) Ceramide-induced G2 arrest in rhabdomyosarcoma (RMS) cells requires p21Cip1/Waf1 induction and is prevented by MDM2 overexpression. Cell Death Differ 14:1780–1791

    Article  CAS  PubMed  Google Scholar 

  • Pirola L, Frojdo S (2008) Resveratrol: one molecule, many targets. IUBMB Life 60:323–332

    Article  CAS  PubMed  Google Scholar 

  • Riebeling C, Allegood JC, Wang E, Merrill AH Jr, Futerman AH (2003) Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J Biol Chem 278:43452–43459

    Article  CAS  PubMed  Google Scholar 

  • Ruckhaberle E, Karn T, Hanker L, Gatje R, Metzler D, Holtrich U, Kaufmann M, Rody A (2009) Prognostic relevance of glucosylceramide synthase (GCS) expression in breast cancer. J Cancer Res Clin Oncol 135:81–90

    Article  PubMed  Google Scholar 

  • Sahin F, Avcı CB, Avcu F, Ural AU, Sarper M, Hisil Y, Omay SB, Saydam G (2007) Red grape seed extract and its compound resveratrol exert cytotoxic effect to various human cancer lines. Turk J Hematol 24(3):102–109

    CAS  Google Scholar 

  • Schenck M, Carpinteiro A, Grassme H, Lang F, Gulbins E (2007) Ceramide: physiological and pathophysiological aspects. Arch Biochem Biophys 462:171–175

    Article  CAS  PubMed  Google Scholar 

  • Senchenkov A, Litvak DA, Cabot MC (2001) Targeting ceramide metabolism—a strategy for overcoming drug resistance. J Natl Cancer Inst 93:347–357

    Article  CAS  PubMed  Google Scholar 

  • Senkal CE, Ponnusamy S, Rossi MJ, Sundararaj K, Szulc Z, Bielawski J, Bielawska A, Meyer M, Cobanoglu B, Koybasi S et al (2006) Potent antitumor activity of a novel cationic pyridinium-ceramide alone or in combination with gemcitabine against human head and neck squamous cell carcinomas in vitro and in vivo. J Pharmacol Exp Ther 317:1188–1199

    Article  CAS  PubMed  Google Scholar 

  • Struckhoff AP, Bittman R, Burow ME, Clejan S, Elliott S, Hammond T, Tang Y, Beckman BS (2004) Novel ceramide analogs as potential chemotherapeutic agents in breast cancer. J Pharmacol Exp Ther 309:523–532

    Article  CAS  PubMed  Google Scholar 

  • Szulc ZM, Bielawski J, Gracz H, Gustilo M, Mayroo N, Hannun YA, Obeid LM, Bielawska A (2006) Tailoring structure-function and targeting properties of ceramides by site-specific cationization. Bioorg Med Chem 14:7083–7104

    Article  CAS  PubMed  Google Scholar 

  • Taha TA, Hannun YA, Obeid LM (2006) Sphingosine kinase: biochemical and cellular regulation and role in disease. J Biochem Mol Biol 39:113–131

    CAS  PubMed  Google Scholar 

  • Venkataraman K, Riebeling C, Bodennec J, Riezman H, Allegood JC, Sullards MC, Merrill AH Jr, Futerman AH (2002) Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J Biol Chem 277:35642–35649

    Article  CAS  PubMed  Google Scholar 

  • Visentin B, Vekich JA, Sibbald BJ, Cavalli AL, Moreno KM, Matteo RG, Garland WA, Lu Y, Yu S, Hall HS et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238

    Article  CAS  PubMed  Google Scholar 

  • Vitoux D, Nasr R, de The H (2007) Acute promyelocytic leukemia: new issues on pathogenesis and treatment response. Int J Biochem Cell Biol 39:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Weinmann A, Galle PR, Teufel A (2005) LASS6, an additional member of the longevity assurance gene family. Int J Mol Med 16:905–910

    CAS  PubMed  Google Scholar 

  • Wieder T, Orfanos CE, Geilen CC (1998) Induction of ceramide-mediated apoptosis by the anticancer phospholipid analog, hexadecylphosphocholine. J Biol Chem 273:11025–11031

    Article  CAS  PubMed  Google Scholar 

  • Xie P, Shen YF, Shi YP, Ge SM, Gu ZH, Wang J, Mu HJ, Zhang B, Qiao WZ, Xie KM (2008) Overexpression of glucosylceramide synthase in associated with multidrug resistance of leukemia cells. Leuk Res 32:475–480

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Zhou J, McCoy DM, Mallampalli RK (2005) LASS5 is the predominant ceramide synthase isoform involved in de novo sphingolipid synthesis in lung epithelia. J Lipid Res 46:1229–1238

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Liu B, Jenkins GM, Hannun YA, Obeid LM (1997) Expression of neutral sphingomyelinase identifies a distinct pool of sphingomyelin involved in apoptosis. J Biol Chem 272:9609–9612

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Turkish Society of Hematology. We thank the staff of Biotechnology and Bioengineering Center of Izmir Institute of Technology for their help and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Baran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cakir, Z., Saydam, G., Sahin, F. et al. The roles of bioactive sphingolipids in resveratrol-induced apoptosis in HL60 acute myeloid leukemia cells. J Cancer Res Clin Oncol 137, 279–286 (2011). https://doi.org/10.1007/s00432-010-0884-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-010-0884-x

Keywords

Navigation