Skip to main content

Advertisement

Log in

The role of TP53 and p21 gene polymorphisms in breast cancer biology in a well specified and characterized German cohort

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Objective

Abrogation of the function of TP53 gene is supposed to lead to a more aggressive breast cancer phenotype that produces a less favorable clinical outcome. The p21 gene on chromosome 6p21.2 can be stimulated by an activated TP53 gene. A product of transcription, the p21 protein, an inhibitor of cyclin-dependent kinases, has its function in gene repair and angiogenesis during cell division, and can regulate apoptosis. The purpose of this analysis was to examine for an association between the genotypes measured on two single nucleotide polymorphisms (SNPs) located within the TP53 and p21 genes.

Methods

In a clinical epidemiological case–control study, 814 individuals were recruited. 550 samples (275 cases/275 control) of peripheral blood obtained from women (aged 22–87 years) with breast cancer and from healthy women (aged 23–87 years) were genotyped for frequencies of the following gene variances: R72P/rs1042522 (gene TP53) and S31R/ss4388499 (gene p21).

Results

For the variance in gene TP53 no significant differences between the control group and women with breast cancer could be estimated. For the variance in gene p21 a statistically significant association between the SNP measured within p21 and breast cancer status was observed. The odds ratio for the increased risk for those carrying the CA genotype as opposed to the CC genotype is 1.74 (95% confidence ratio = 1.00–3.05).

Conclusion

Despite this finding p21 does not appear to act as an exclusive prognostic marker for breast cancer disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Asada M, Yamada T, Ichijo H, Delia D, Miyazono K, Fukumuro K, Mizutani S (1999) Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation 2. EMBO J 18:1223–1234

    Article  CAS  PubMed  Google Scholar 

  • Bahl R, Arora S, Nath N, Mathur M, Shukla NK, Ralhan R (2000) Novel polymorphism in p21(waf1/cip1) cyclin dependent kinase inhibitor gene: association with human esophageal cancer. Oncogene 19:323–328

    Article  CAS  PubMed  Google Scholar 

  • Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, van Tuinen P, Ledbetter DH, Baker DF, Nakamura Y, White R, Vogelstein B (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    Article  CAS  PubMed  Google Scholar 

  • Bansal A, van den Boom D, Kammerer S, Honisch C, Adam G, Cantor CR, Kleyn P, Braun A (2002) Association testing by DNA pooling: an effective initial screen. Proc Natl Acad Sci USA 99:16871–16874

    Article  CAS  PubMed  Google Scholar 

  • Buetow KH, Edmonson M, MacDonald R, Clifford R, Yip P, Kelley J, Little DP, Strausberg R, Koester H, Cantor CR, Braun A (2001) High-throughput development and characterization of a genome wide collection of gene-based single nucleotide polymorphism markers by chip-based matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Natl Acad Sci USA 98:581–584

    Article  CAS  PubMed  Google Scholar 

  • Calabretta B, Kaczmarek L, Selleri L, Torelli G, Ming PM, Ming SC, Mercer WE (1986) Growth-dependent expression of human Mr 53,000 tumor antigen messenger RNA in normal and neoplastic cells. Cancer Res 46:5738–5742

    CAS  PubMed  Google Scholar 

  • Castells A, Puig P, Móra J, Boadas J, Boix L, Urgell E, Solé M, Capellà G, Lluis F, Fernández-Cruz L, Navarro S, Farré A (1999) K-ras mutations in DNA extracted from the plasma of patients with pancreatic carcinoma: diagnostic utility and prognostic significance. J Clin Oncol 17:578–584

    CAS  PubMed  Google Scholar 

  • Chedid M, Michieli P, Lengel C, Huppi K, Givol D (1994) A single nucleotide substitution at codon 31 (Ser/Arg) defines a polymorphism in a highly conserved region of the p53-inducible gene WAF1/CIP1. Oncogene 9:3021–3024

    CAS  PubMed  Google Scholar 

  • Crook T, Crossland S, Crompton MR, Osin P, Gusterson BA (1997) P53 mutations in BRCA1-associated familial breast cancer. Lancet 350:638–639

    Article  CAS  PubMed  Google Scholar 

  • Deppert W, Buschhausen-Denker G, Patschinsky T, Steinmeyer K (1990) Cell cycle control of p53 in normal (3T3) and chemically transformed (Meth A) mouse cells II. Requirement for cell cycle progression. Oncogene 5:1701–1706

    CAS  PubMed  Google Scholar 

  • Doll R, Peto R (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66:1191–1308

    CAS  PubMed  Google Scholar 

  • Dunning AM, Healey CS, Pharoah PD, Teare MD, Ponder BA, Easton DF (1999) A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 8:843–854

    CAS  PubMed  Google Scholar 

  • el Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  CAS  PubMed  Google Scholar 

  • Field JK, Spandidos DA (1990) The role of ras and myc oncogenes in human solid tumours and their relevance in diagnosis and prognosis (review) 1. Anticancer Res 10:1–22

    CAS  PubMed  Google Scholar 

  • Gulbis B, Galand P (1993) Immunodetection of the p21-ras products in human normal and preneoplastic tissues and solid tumors: a review. Hum Pathol 24:1271–1285

    Article  CAS  PubMed  Google Scholar 

  • Hachiya T, Kuriaki Y, Ueoka Y, Nishida J, Kato K, Wake N (1999) WAF1 genotype and endometrial cancer susceptibility. Gynecol Oncol 72:187–192

    Article  CAS  PubMed  Google Scholar 

  • Hoyal CR, Kammerer S, Roth RB, Reneland R, Marnellos G, Kiechle M, Schwarz-Boeger U, Griffiths LR, Ebner F, Rehbock J, Nelson MR, Braun A (2005) Genetic polymorphisms in DPF3 associated with risk of breast cancer and lymph node metastases. J Carcinog 4:13

    Article  PubMed  CAS  Google Scholar 

  • Kammerer S, Roth RB, Reneland R, Marnellos G, Hoyal CR, Markward NJ, Ebner F, Kiechle M, Schwarz-Boeger U, Griffiths LR, Ulbrich C, Chrobok K, Forster G, Praetorius GM, Meyer P, Rehbock J, Cantor CR, Nelson MR, Braun A (2004) Large-scale association study identifies ICAM gene region as breast and prostate cancer susceptibility locus. Cancer Res 64:8906–8910

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    CAS  PubMed  Google Scholar 

  • Kaul R, Mukherjee S, Ahmed F, Bhat MK, Chhipa R, Galande S, Chattopadhyay S (2003) Direct interaction with and activation of p53 by SMAR1 retards cell-cycle progression at G2/M phase and delays tumor growth in mice. Int J Cancer 103:606–615

    Article  CAS  PubMed  Google Scholar 

  • Keshava C, Frye BL, Wolff MS, McCanlies EC, Weston A (2002) Waf-1 (p21) and p53 polymorphisms in breast cancer. Cancer Epidemiol Biomarkers Prev 11:127–130

    CAS  PubMed  Google Scholar 

  • Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89:7491–7495

    Article  CAS  PubMed  Google Scholar 

  • Lavigueur A, Maltby V, Mock D, Rossant J, Pawson T, Bernstein A (1989) High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol 9:3982–3991

    CAS  PubMed  Google Scholar 

  • Li Y, Dowbenko D, Lasky LA (2002) AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival 1. J Biol Chem 277:11352–11361

    Article  CAS  PubMed  Google Scholar 

  • Lukas J, Groshen S, Saffari B, Niu N, Reles A, Wen WH, Felix J, Jones LA, Hall FL, Press MF (1997) WAF1/Cip1 gene polymorphism and expression in carcinomas of the breast, ovary, and endometrium. Am J Pathol 150:167–175

    CAS  PubMed  Google Scholar 

  • Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bishoff FZ, Tainsky MA et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238

    Article  CAS  PubMed  Google Scholar 

  • McCubrey JA, Abrams SL, Ligresti G, Misaghian N, Wong EW, Steelman LS, Bäsecke J, Troppmair J, Libra M, Nicoletti F, Molton S, McMahon M, Evangelisti C, Martelli AM (2008) Involvement of p53 and Raf/MEK/ERK pathways in hematopoietic drug resistance. Leukemia 22:2080–2090

    Article  CAS  PubMed  Google Scholar 

  • Mercer WE, Avignolo C, Baserga R (1984) Role of the p53 protein in cell proliferation as studied by microinjection of monoclonal antibodies. Mol Cell Biol 4:276–281

    CAS  PubMed  Google Scholar 

  • Milner J, McCormick F (1980) Lymphocyte stimulation: concanavalin A induces the expression of a 53 K protein. Cell Biol Int Rep 4:663–667

    Article  CAS  PubMed  Google Scholar 

  • Osin PP, Lakhani SR (1999) The pathology of familial breast cancer: Immunohistochemistry and molecular analysis. Breast Cancer Res 1:36–40

    Article  CAS  PubMed  Google Scholar 

  • Packer BR, Yeager M, Burdett L, Welch R, Beerman M, Qi L, Sicotte H, Staats B, Acharya M, Crenshaw A, Eckert A, Puri V, Gerhard DS, Chanock SJ (2006) SNP500Cancer: a public resource for sequence validation, assay development, and frequency analysis for genetic variation in candidate genes. Nucleic Acids Res 34:617–621

    Google Scholar 

  • Powell BL, van Staveren IL, Roosken P, Grieu F, Berns EM, Iacopetta B (2002) Associations between common polymorphisms in TP53 and p21WAF1/Cip1 and phenotypic features of breast cancer. Carcinogenesis 23:311–315

    Article  CAS  PubMed  Google Scholar 

  • Reich NC, Levine AJ (1984) Growth regulation of a cellular tumour antigen, p53, in nontransformed cells. Nature 308:199–201

    Article  CAS  PubMed  Google Scholar 

  • Sauer H (ed) Manual Mammakarzinom 2005, Tumorzentrum München, Zuckschwert Verlag München, Wien, New York

  • Shohat O, Greenberg M, Reisman D, Oren M, Rotter V (1987) Inhibition of cell growth mediated by plasmids encoding p53 anti-sense. Oncogene 1:277–283

    CAS  PubMed  Google Scholar 

  • Silva JM, Dominguez G, Garcia JM, Gonzalez R, Villanueva MJ, Navarro F, Provencio M, San Martin S, Espana P, Bonilla F (1999) Presence of tumor DNA in plasma of breast cancer patients: clinicopathological correlations. Cancer Res 59:3251–3256

    CAS  PubMed  Google Scholar 

  • Själander A, Birgander R, Hallmans G, Cajander S, Lenner P, Athlin L, Beckman G, Beckman L (1996) p53 polymorphisms and haplotypes in breast cancer. Carcinogenesis 17:1313–1316

    Article  PubMed  Google Scholar 

  • Soehnge H, Ouhtit A, Ananthaswamy HN (1997) Mechanisms of induction of skin cancer by UV radiation. Front Biosci 2:d538–d551

    CAS  PubMed  Google Scholar 

  • Steinmeyer K, Maacke H, Deppert W (1990) Cell cycle control by p53 in normal (3T3) and chemically transformed (Meth A) mouse cells. I. Regulation of p53 expression. Oncogene 5:1691–1699

    CAS  PubMed  Google Scholar 

  • Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Mima JD (1989) p53: a frequent target for genetic abnormalities in lung cancer. Science 246:491–494

    Article  CAS  PubMed  Google Scholar 

  • The Breast Cancer Association Consortium (2006) Commonly studies single-nucleotide polymorphisms and breast cancer: results from the breast cancer association consortium. J Natl Cancer Inst 98:1382–1396

    Article  Google Scholar 

  • Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    Article  CAS  PubMed  Google Scholar 

  • Weiss RH, Marshall D, Howard L, Corbacho AM, Cheung AT, Sawai ET (2003) Suppression of breast cancer growth and angiogenesis by an antisense oligodeoxynucleotide to p21(Waf1/Cip1). Cancer Lett 189:39–48

    Article  CAS  PubMed  Google Scholar 

  • Yair D, Ben Baruch G, Chetrit A, Friedman T, Hirsh Yechezkel G, Gotlieb WH, Fishman A, Beller U, Bar-Am A, Fishman E (2000) p53 and WAF1 polymorphisms in Jewish-Israeli women with epithelial ovarian cancer and its association with BRCA mutations. BJOG 107:849–854

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the staff of the I Frauenklinik, Ludwig-Maximilians-University Munich, for their excellent contributions and Dr.rer.nat. Dr.med. Andreas Braun and Dr.rer.nat. Stephan Kammerer, Sequenom Inc. San Diego, CA, USA, for all their outstanding help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Schremmer-Danninger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebner, F., Schremmer-Danninger, E. & Rehbock, J. The role of TP53 and p21 gene polymorphisms in breast cancer biology in a well specified and characterized German cohort. J Cancer Res Clin Oncol 136, 1369–1375 (2010). https://doi.org/10.1007/s00432-010-0788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-010-0788-9

Keywords

Navigation