Skip to main content

Advertisement

Log in

Fragile histidine triad protein: structure, function, and its association with tumorogenesis

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

The human fragile histidine triad (FHIT) gene is a putative tumor suppressor gene, which is located at chromosome region 3p14.2. It was suggested that the loss of heterozygosity (LOH), homozygous deletions, and abnormal expression of the FHIT gene were involved in several types of human malignancies.

Materials and methods

To determine the role of FHIT in various cancers, we have performed structural and functional analysis of FHIT in detail.

Results and discussion

The protein FHIT catalyzes the Mg2+ dependent hydrolysis of P1-5¢-O-adenosine-P3-5¢-O-adenosine triphosphate, Ap3A, to AMP, and ADP. The reaction is thought to follow a two-step mechanism. Histidine triad proteins, named for a motif related to the sequence H-¢-H-¢-H-¢-¢- (¢, a hydrophobic amino acid), belong to superfamily of nucleotide hydrolases and transferases. This enzyme acts on the R-phosphate of ribonucleotides, and contain a ~30-kDa domain that is typically a homodimer of ~15 kDa polypeptides with catalytic site.

Conclusion

Here we have gathered information is known about biological activities of FHIT, the structural and biochemical bases for their functions. Our approach may provide a comparative framework for further investigation of FHIT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmadian M, Wistuba II, Fong KM et al (1997) Analysis of the FHIT gene and FRA3B region in sporadic breast cancer, preneoplastic lesions, and familial breast cancer probands. Cancer Res 57:3664–3668

    CAS  PubMed  Google Scholar 

  • Albitar M, Manshouri T, Gidel C et al (2001) Clinical significance of fragile histidine triad gene expression in adult acute lymphoblastic leukemia. Leuk Res 25:859–864

    CAS  PubMed  Google Scholar 

  • Askari MD, Vo-Dinh T (2004) Implication of mitochondrial involvement in apoptotic activity of fragile histidine triad gene: application of synchronous luminescence spectroscopy. Biopolymers 73:510–523

    CAS  PubMed  Google Scholar 

  • Baffa R, Veronese ML, Santoro R et al (1998) Loss of FHIT expression in gastric carcinoma. Cancer Res 58:4708–4714

    CAS  PubMed  Google Scholar 

  • Baffa R, Gomella LG, Vecchione A et al (2000) Loss of FHIT expression in transitional cell carcinoma of the urinary bladder. Am J Pathol 156:419–424

    CAS  PubMed  Google Scholar 

  • Barnes LD, Garrison PN, Siprashvili Z et al (1996) Fhit, a putative tumor suppressor in humans, is a dinucleoside 5′, 5″′-P1,P3-triphosphate hydrolase. Biochemistry 35:11529–11535

    CAS  PubMed  Google Scholar 

  • Bianchi F, Tagliabue E, Menard S et al (2007) Fhit expression protects against HER2-driven breast tumor development: unraveling the molecular interconnections. Cell Cycle 6:643–646

    CAS  PubMed  Google Scholar 

  • Brenner C (2002) Hint, Fhit, and GalT: function, structure, evolution, and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases. Biochemistry 41:9003–9014

    CAS  PubMed  Google Scholar 

  • Brenner C, Garrison P, Gilmour J et al (1997a) Crystal structures of HINT demonstrate that histidine triad proteins are GalT-related nucleotide-binding proteins. Nat Struct Biol 4:231–238

    CAS  PubMed  Google Scholar 

  • Brenner C, Pace HC, Garrison PN et al (1997b) Purification and crystallization of complexes modeling the active state of the fragile histidine triad protein. Protein Eng 10:1461–1463

    CAS  PubMed  Google Scholar 

  • Brenner C, Bieganowski P, Pace HC et al (1999) The histidine triad superfamily of nucleotide-binding proteins. J Cell Physiol 181:179–187

    CAS  PubMed  Google Scholar 

  • Bugert P, Wilhelm M, Kovacs G (1997) FHIT gene and the FRA3B region are not involved in the genetics of renal cell carcinomas. Genes Chromosomes Cancer 20:9–15

    CAS  PubMed  Google Scholar 

  • Campiglio M, Pekarsky Y, Menard S et al (1999) FHIT loss of function in human primary breast cancer correlates with advanced stage of the disease. Cancer Res 59:3866–3869

    CAS  PubMed  Google Scholar 

  • Cao J, Li W, Xie J et al (2006) Down-regulation of FHIT inhibits apoptosis of colorectal cancer: mechanism and clinical implication. Surg Oncol 15:223–233

    PubMed  Google Scholar 

  • Carapeti M, Aguiar RC, Sill H et al (1998) Aberrant transcripts of the FHIT gene are expressed in normal and leukaemic haemopoietic cells. Br J Cancer 78:601–605

    CAS  PubMed  Google Scholar 

  • Chaudhuri AR, Khan IA, Prasad V et al (1999) The tumor suppressor protein Fhit. A novel interaction with tubulin. J Biol Chem 274:24378–24382

    CAS  PubMed  Google Scholar 

  • Connolly DC, Greenspan DL, Wu R et al (2000) Loss of fhit expression in invasive cervical carcinomas and intraepithelial lesions associated with invasive disease. Clin Cancer Res 6:3505–3510

    CAS  PubMed  Google Scholar 

  • Corbin S, Neilly ME, Espinosa R 3rd et al (2002) Identification of unstable sequences within the common fragile site at 3p14.2: implications for the mechanism of deletions within fragile histidine triad gene/common fragile site at 3p14.2 in tumors. Cancer Res 62:3477–3484

    CAS  PubMed  Google Scholar 

  • De Flora S, D’Agostini F, Izzotti A et al (2007) Molecular and cytogenetical alterations induced by environmental cigarette smoke in mice heterozygous for Fhit. Cancer Res 67:1001–1006

    PubMed  Google Scholar 

  • Deka J, Kuhlmann J, Muller O (1998) A domain within the tumor suppressor protein APC shows very similar biochemical properties as the microtubule-associated protein tau. Eur J Biochem 253:591–597

    CAS  PubMed  Google Scholar 

  • Dreijerink K, Braga E, Kuzmin I et al (2001) The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis. Proc Natl Acad Sci USA 98:7504–7509

    CAS  PubMed  Google Scholar 

  • Druck T, Hadaczek P, Fu TB et al (1997) Structure and expression of the human FHIT gene in normal and tumor cells. Cancer Res 57:504–512

    CAS  PubMed  Google Scholar 

  • Dustin ML, Jacobson GR, Peterson SW (1984) Effects of insulin receptor down-regulation on hexose transport in human erythrocytes. J Biol Chem 259:13660–13663

    CAS  PubMed  Google Scholar 

  • Feng X, Li L, Gao Y et al (2007) Fhit protein expression in lung cancer studied by high-throughput tissue microarray. Bull Cancer 94:E8–11

    PubMed  Google Scholar 

  • Ferens B, Kawiak A, Banecki B et al (2009) Aberration of the enzymatic activity of Fhit tumor suppressor protein enhances cancer cell death upon photodynamic therapy similarly to that driven by wild-type Fhit. Cancer Lett 280:101–109

    CAS  PubMed  Google Scholar 

  • Fong LY, Fidanza V, Zanesi N et al (2000) Muir-Torre-like syndrome in Fhit-deficient mice. Proc Natl Acad Sci USA 97:4742–4747

    CAS  PubMed  Google Scholar 

  • Fouts RL, Sandusky GE, Zhang S et al (2003) Down-regulation of fragile histidine triad expression in prostate carcinoma. Cancer 97:1447–1452

    CAS  PubMed  Google Scholar 

  • Gartenhaus RB (1997) Allelic loss determination in chronic lymphocytic leukemia by immunomagnetic bead sorting and microsatellite marker analysis. Oncogene 14:375–378

    CAS  PubMed  Google Scholar 

  • Gayrard N, Cacheux V, Iborra F et al (2008) Cytogenetic studies of 24 renal epithelial tumors with von Hippel-Lindau and fragile histidine triad protein expression correlation. Arch Pathol Lab Med 132:965–973

    PubMed  Google Scholar 

  • Gayther SA, Barski P, Batley SJ et al (1997) Aberrant splicing of the TSG101 and FHIT genes occurs frequently in multiple malignancies and in normal tissues and mimics alterations previously described in tumours. Oncogene 15:2119–2126

    CAS  PubMed  Google Scholar 

  • Gemma A, Hagiwara K, Ke Y et al (1997) FHIT mutations in human primary gastric cancer. Cancer Res 57:1435–1437

    CAS  PubMed  Google Scholar 

  • Glover TW, Berger C, Coyle J et al (1984) DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 67:136–142

    CAS  PubMed  Google Scholar 

  • Glover TW, Coyle-Morris JF, Li FP et al (1988) Translocation t(3;8)(p14.2;q24.1) in renal cell carcinoma affects expression of the common fragile site at 3p14(FRA3B) in lymphocytes. Cancer Genet Cytogenet 31:69–73

    CAS  PubMed  Google Scholar 

  • Gnarra JR, Lerman MI, Zbar B et al (1995) Genetics of renal-cell carcinoma and evidence for a critical role for von Hippel-Lindau in renal tumorigenesis. Semin Oncol 22:3–8

    CAS  PubMed  Google Scholar 

  • Golebiowski F, Szulc A, Szutowicz A et al (2004) Ubc9-induced inhibition of diadenosine triphosphate hydrolase activity of the putative tumor suppressor protein Fhit. Arch Biochem Biophys 428:160–164

    CAS  PubMed  Google Scholar 

  • Gopalakrishnan VK, Banerjee AG, Vishwanatha JK (2003) Effect of FHIT gene replacement on growth, cell cycle and apoptosis in pancreatic cancer cells. Pancreatology 3:293–302

    CAS  PubMed  Google Scholar 

  • Greenspan DL, Connolly DC, Wu R et al (1997) Loss of FHIT expression in cervical carcinoma cell lines and primary tumors. Cancer Res 57:4692–4698

    CAS  PubMed  Google Scholar 

  • Guerin LA, Hoffman HT, Zimmerman MB et al (2006) Decreased fragile histidine triad gene protein expression is associated with worse prognosis in oral squamous carcinoma. Arch Pathol Lab Med 130:158–164

    CAS  PubMed  Google Scholar 

  • Guidi E, Uboldi C, Ferretti L (2008) Molecular analysis of the fragile histidine triad (FHIT) tumor suppressor gene in vesical tumors of cattle with chronic enzootic hematuria (CEH). Cytogenet Genome Res 120:173–177

    CAS  PubMed  Google Scholar 

  • Guler G, Huebner K, Himmetoglu C et al (2009) Fragile histidine triad protein, WW domain-containing oxidoreductase protein Wwox, and activator protein 2gamma expression levels correlate with basal phenotype in breast cancer. Cancer 115:899–908

    CAS  PubMed  Google Scholar 

  • Guo XQ, Wang SJ, Zhang LW et al (2007) DNA methylation and loss of protein expression in esophageal squamous cell carcinogenesis of high-risk area. J Exp Clin Cancer Res 26:587–594

    CAS  PubMed  Google Scholar 

  • Hadaczek P, Siprashvili Z, Markiewski M et al (1998) Absence or reduction of Fhit expression in most clear cell renal carcinomas. Cancer Res 58:2946–2951

    CAS  PubMed  Google Scholar 

  • Hallas C, Albitar M, Letofsky J et al (1999) Loss of FHIT expression in acute lymphoblastic leukemia. Clin Cancer Res 5:2409–2414

    CAS  PubMed  Google Scholar 

  • Harrison CJ (2001) Acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 14:593–607

    CAS  PubMed  Google Scholar 

  • Hayashi S, Tanimoto K, Hajiro-Nakanishi K et al (1997) Abnormal FHIT transcripts in human breast carcinomas: a clinicopathological and epidemiological analysis of 61 Japanese cases. Cancer Res 57:1981–1985

    CAS  PubMed  Google Scholar 

  • Hendricks DT, Taylor R, Reed M et al (1997) FHIT gene expression in human ovarian, endometrial, and cervical cancer cell lines. Cancer Res 57:2112–2115

    CAS  PubMed  Google Scholar 

  • Hesketh A, Ochi K (1997) A novel method for improving Streptomyces coelicolor A3(2) for production of actinorhodin by introduction of rpsL (encoding ribosomal protein S12) mutations conferring resistance to streptomycin. J Antibiot (Tokyo) 50:532–535

    CAS  Google Scholar 

  • Hiraoka H, Minami K, Kaneko N et al (2009) Molecular cloning of the canine fragile histidine triad (FHIT) gene and Fhit protein expression in canine peripheral blood mononuclear cells. J Vet Med Sci 71:645–649

    CAS  PubMed  Google Scholar 

  • Holschneider CH, Baldwin RL, Tumber K et al (2005) The fragile histidine triad gene: a molecular link between cigarette smoking and cervical cancer. Clin Cancer Res 11:5756–5763

    CAS  PubMed  Google Scholar 

  • Hsu HS, Chen TP, Hung CH et al (2007) Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer 110:2019–2026

    CAS  PubMed  Google Scholar 

  • Hu B, Wang H, Wang X et al (2005) Fhit and CHK1 have opposing effects on homologous recombination repair. Cancer Res 65:8613–8616

    CAS  PubMed  Google Scholar 

  • Huber O, Weiske J (2008) Beta-catenin takes a HIT. Cell Cycle 7:1326–1331

    CAS  PubMed  Google Scholar 

  • Huebner K, Croce CM (2003) Cancer and the FRA3B/FHIT fragile locus: it’s a HIT. Br J Cancer 88:1501–1506

    CAS  PubMed  Google Scholar 

  • Huebner K, Druck T, Siprashvili Z et al (1998a) The role of deletions at the FRA3B/FHIT locus in carcinogenesis. Recent Results Cancer Res 154:200–215

    CAS  PubMed  Google Scholar 

  • Huebner K, Garrison PN, Barnes LD et al (1998b) The role of the FHIT/FRA3B locus in cancer. Annu Rev Genet 32:7–31

    CAS  PubMed  Google Scholar 

  • Iliopoulos D, Guler G, Han SY et al (2005) Fragile genes as biomarkers: epigenetic control of WWOX and FHIT in lung, breast and bladder cancer. Oncogene 24:1625–1633

    CAS  PubMed  Google Scholar 

  • Iwai T, Yokota S, Nakao M et al (1998) Frequent aberration of FHIT gene expression in acute leukemias. Cancer Res 58:5182–5187

    CAS  PubMed  Google Scholar 

  • Jensen LJ, Kuhn M, Stark M et al (2009) STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37:D412–D416

    CAS  PubMed  Google Scholar 

  • Ji L, Fang B, Yen N et al (1999) Induction of apoptosis and inhibition of tumorigenicity and tumor growth by adenovirus vector-mediated fragile histidine triad (FHIT) gene overexpression. Cancer Res 59:3333–3339

    CAS  PubMed  Google Scholar 

  • Kantarjian HM, Talpaz M, O’Brien S et al (1999) Significance of FHIT expression in chronic myelogenous leukemia. Clin Cancer Res 5:4059–4064

    CAS  PubMed  Google Scholar 

  • Kastury K, Baffa R, Druck T et al (1996) Potential gastrointestinal tumor suppressor locus at the 3p14.2 FRA3B site identified by homozygous deletions in tumor cell lines. Cancer Res 56:978–983

    CAS  PubMed  Google Scholar 

  • Ki KD, Lee SK, Tong SY et al (2008) Role of 5′-CpG island hypermethylation of the FHIT gene in cervical carcinoma. J Gynecol Oncol 19:117–122

    CAS  PubMed  Google Scholar 

  • Kim I, Crippen GM, Amidon GL (2004) Structure and specificity of a human valacyclovir activating enzyme: a homology model of BPHL. Mol Pharm 1:434–446

    CAS  PubMed  Google Scholar 

  • Kisselev LL, Justesen J, Wolfson AD et al (1998) Diadenosine oligophosphates (Ap(n)A), a novel class of signalling molecules? FEBS Lett 427:157–163

    CAS  PubMed  Google Scholar 

  • Kitano T, Tian W, Umetsu K et al (2006) Origin and evolution of gene for prolactin-induced protein. Gene 383:64–70

    CAS  PubMed  Google Scholar 

  • Knudson AG (2000) Chasing the cancer demon. Annu Rev Genet 34:1–19

    CAS  PubMed  Google Scholar 

  • Kohno T, Yokota J (1999) How many tumor suppressor genes are involved in human lung carcinogenesis? Carcinogenesis 20:1403–1410

    CAS  PubMed  Google Scholar 

  • Kok K, Naylor SL, Buys CH (1997) Deletions of the short arm of chromosome 3 in solid tumors and the search for suppressor genes. Adv Cancer Res 71:27–92

    CAS  PubMed  Google Scholar 

  • Koliopanos A, Avgerinos C, Paraskeva C et al (2008) Molecular aspects of carcinogenesis in pancreatic cancer. Hepatobiliary Pancreat Dis Int 7:345–356

    CAS  PubMed  Google Scholar 

  • Kraggerud SM, Aman P, Holm R et al (2002) Alterations of the fragile histidine triad gene, FHIT, and its encoded products contribute to testicular germ cell tumorigenesis. Cancer Res 62:512–517

    CAS  PubMed  Google Scholar 

  • Kuroki T, Trapasso F, Yendamuri S et al (2003) Allele loss and promoter hypermethylation of VHL, RAR-beta, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res 63:3724–3728

    CAS  PubMed  Google Scholar 

  • Larson AA, Kern S, Curtiss S et al (1997) High resolution analysis of chromosome 3p alterations in cervical carcinoma. Cancer Res 57:4082–4090

    CAS  PubMed  Google Scholar 

  • Lea JS, Ashfaq R, Muneer S et al (2004) Understanding the mechanisms of FHIT inactivation in cervical cancer for biomarker development. J Soc Gynecol Investig 11:329–337

    CAS  PubMed  Google Scholar 

  • Lee SH (2006) Differential gene expression in nickel(II)-treated normal rat kidney cells. Res Commun Mol Pathol Pharmacol 119:77–87

    CAS  PubMed  Google Scholar 

  • Lee SH, Kim CJ, Park HK et al (2001) Characterization of aberrant FHIT transcripts in gastric adenocarcinomas. Exp Mol Med 33:124–130

    CAS  PubMed  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386:623–627

    CAS  PubMed  Google Scholar 

  • Lima CD, D’Amico KL, Naday I et al (1997) MAD analysis of FHIT, a putative human tumor suppressor from the HIT protein family. Structure 5:763–774

    CAS  PubMed  Google Scholar 

  • Lin PM, Liu TC, Chang JG et al (1997) Aberrant FHIT transcripts in acute myeloid leukaemia. Br J Haematol 99:612–617

    CAS  PubMed  Google Scholar 

  • Linehan DC, Goedegebuure PS, Peoples GE et al (1995) Tumor-specific and HLA-A2-restricted cytolysis by tumor-associated lymphocytes in human metastatic breast cancer. J Immunol 155:4486–4491

    CAS  PubMed  Google Scholar 

  • Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079

    CAS  PubMed  Google Scholar 

  • Luan X, Shi G, Zohouri M et al (1997) The FHIT gene is alternatively spliced in normal kidney and renal cell carcinoma. Oncogene 15:79–86

    CAS  PubMed  Google Scholar 

  • Luan X, Ramesh KH, Cannizzaro LA (1998) FHIT gene transcript alterations occur frequently in myeloproliferative and myelodysplastic diseases. Cytogenet Cell Genet 81:183–188

    CAS  PubMed  Google Scholar 

  • Lucito R, Suresh S, Walter K et al (2007) Copy-number variants in patients with a strong family history of pancreatic cancer. Cancer Biol Ther 6:1592–1599

    Article  CAS  PubMed  Google Scholar 

  • Mao L (1998) Tumor suppressor genes: does FHIT fit? J Natl Cancer Inst 90:412–414

    CAS  PubMed  Google Scholar 

  • Matsuyama A, Shiraishi T, Trapasso F et al (2003) Fragile site orthologs FHIT/FRA3B and Fhit/Fra14A2: evolutionarily conserved but highly recombinogenic. Proc Natl Acad Sci USA 100:14988–14993

    CAS  PubMed  Google Scholar 

  • Michael D, Beer DG, Wilke CW et al (1997) Frequent deletions of FHIT and FRA3B in Barrett’s metaplasia and esophageal adenocarcinomas. Oncogene 15:1653–1659

    CAS  PubMed  Google Scholar 

  • Moore PS, Beghelli S, Zamboni G et al (2003) Genetic abnormalities in pancreatic cancer. Mol Cancer 2:7

    PubMed  Google Scholar 

  • Mori M, Mimori K, Shiraishi T et al (2000) Altered expression of Fhit in carcinoma and precarcinomatous lesions of the esophagus. Cancer Res 60:1177–1182

    CAS  PubMed  Google Scholar 

  • Mulvihill DJ, Wang YH (2004) Two breakpoint clusters at fragile site FRA3B form phased nucleosomes. Genome Res 14:1350–1357

    CAS  PubMed  Google Scholar 

  • Munger K, Pietenpol JA, Pittelkow MR et al (1992) Transforming growth factor beta 1 regulation of c-myc expression, pRB phosphorylation, and cell cycle progression in keratinocytes. Cell Growth Differ 3:291–298

    CAS  PubMed  Google Scholar 

  • Murphy LC, Tsuyuki D, Myal Y et al (1987) Isolation and sequencing of a cDNA clone for a prolactin-inducible protein (PIP). Regulation of PIP gene expression in the human breast cancer cell line, T-47D. J Biol Chem 262:15236–15241

    CAS  PubMed  Google Scholar 

  • Muzny DM, Scherer SE, Kaul R et al (2006) The DNA sequence, annotation and analysis of human chromosome 3. Nature 440:1194–1198

    CAS  PubMed  Google Scholar 

  • Myal Y, Robinson DB, Iwasiow B et al (1991) The prolactin-inducible protein (PIP/GCDFP-15) gene: cloning, structure and regulation. Mol Cell Endocrinol 80:165–175

    CAS  PubMed  Google Scholar 

  • Negrini M, Monaco C, Vorechovsky I et al (1996) The FHIT gene at 3p14.2 is abnormal in breast carcinomas. Cancer Res 56:3173–3179

    CAS  PubMed  Google Scholar 

  • Neyaz MK, Kumar RS, Hussain S et al (2008) Effect of aberrant promoter methylation of FHIT and RASSF1A genes on susceptibility to cervical cancer in a North Indian population. Biomarkers 13:597–606

    PubMed  Google Scholar 

  • Ohta M, Hara N (1986) Combined modality treatment of lung cancer: present and future. Nihon Kyobu Shikkan Gakkai Zasshi 24:1186–1191

    CAS  PubMed  Google Scholar 

  • Ohta M, Kano T, Nishida Y et al (1986) Embryonal carcinoma (Higuchi, Kato) of the ovary, clinical analysis and recent improvement of treatment using alpha FP as a tumor marker. Nippon Sanka Fujinka Gakkai Zasshi 38:887–895

    CAS  PubMed  Google Scholar 

  • Ohta M, Inoue H, Cotticelli MG et al (1996) The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 84:587–597

    CAS  PubMed  Google Scholar 

  • Okumura H, Ishii H, Pichiorri F et al (2009) Fragile gene product, Fhit, in oxidative and replicative stress responses. Cancer Sci 100:1145–1150

    CAS  PubMed  Google Scholar 

  • Osawa M, Horiuchi H, Tian W et al (2004) Divergent evolution of the prolactin-inducible protein gene and related genes in the mouse genome. Gene 325:179–186

    CAS  PubMed  Google Scholar 

  • Ottey M, Han SY, Druck T et al (2004) Fhit-deficient normal and cancer cells are mitomycin C and UVC resistant. Br J Cancer 91:1669–1677

    CAS  PubMed  Google Scholar 

  • Ozols RF (1994) Research directions in epithelial ovarian cancer. Gynecol Oncol 55:S168–S173

    CAS  PubMed  Google Scholar 

  • Pace HC, Garrison PN, Robinson AK et al (1998) Genetic, biochemical, and crystallographic characterization of Fhit-substrate complexes as the active signaling form of Fhit. Proc Natl Acad Sci USA 95:5484–5489

    CAS  PubMed  Google Scholar 

  • Pace HC, Hodawadekar SC, Draganescu A et al (2000) Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers. Curr Biol 10:907–917

    CAS  PubMed  Google Scholar 

  • Panagopoulos I, Pandis N, Thelin S et al (1996) The FHIT and PTPRG genes are deleted in benign proliferative breast disease associated with familial breast cancer and cytogenetic rearrangements of chromosome band 3p14. Cancer Res 56:4871–4875

    CAS  PubMed  Google Scholar 

  • Pandis N, Bardi G, Mitelman F et al (1997) Deletion of the short arm of chromosome 3 in breast tumors. Genes Chromosomes Cancer 18:241–245

    CAS  PubMed  Google Scholar 

  • Paulovich AG, Armour CD, Hartwell LH (1998) The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. Genetics 150:75–93

    CAS  PubMed  Google Scholar 

  • Pecherzewska R, Nawrot B (2009) FHIT—tumor suppressor protein involved in induction of apoptosis and cell cycle regulation. Postepy Biochem 55:66–75

    CAS  PubMed  Google Scholar 

  • Pekarsky Y, Campiglio M, Siprashvili Z et al (1998a) Nitrilase and Fhit homologs are encoded as fusion proteins in Drosophila melanogaster and Caenorhabditis elegans. Proc Natl Acad Sci USA 95:8744–8749

    CAS  PubMed  Google Scholar 

  • Pekarsky Y, Druck T, Cotticelli MG et al (1998b) The murine Fhit locus: isolation, characterization, and expression in normal and tumor cells. Cancer Res 58:3401–3408

    CAS  PubMed  Google Scholar 

  • Pekarsky Y, Palamarchuk A, Huebner K et al (2002) FHIT as tumor suppressor: mechanisms and therapeutic opportunities. Cancer Biol Ther 1:232–236

    CAS  PubMed  Google Scholar 

  • Pekarsky Y, Garrison PN, Palamarchuk A et al (2004) Fhit is a physiological target of the protein kinase Src. Proc Natl Acad Sci USA 101:3775–3779

    CAS  PubMed  Google Scholar 

  • Peters UR, Hasse U, Oppliger E et al (1999) Aberrant FHIT mRNA transcripts are present in malignant and normal haematopoiesis, but absence of FHIT protein is restricted to leukaemia. Oncogene 18:79–85

    CAS  PubMed  Google Scholar 

  • Pichiorri F, Trapasso F, Palumbo T et al (2006) Preclinical assessment of FHIT gene replacement therapy in human leukemia using a chimeric adenovirus, Ad5/F35. Clin Cancer Res 12:3494–3501

    CAS  PubMed  Google Scholar 

  • Pichiorri F, Okumura H, Nakamura T et al (2009) Correlation of fragile histidine triad (Fhit) protein structural features with effector interactions and biological functions. J Biol Chem 284:1040–1049

    CAS  PubMed  Google Scholar 

  • Poland KS, Azim M, Folsom M et al (2007) A constitutional balanced t(3;8)(p14;q24.1) translocation results in disruption of the TRC8 gene and predisposition to clear cell renal cell carcinoma. Genes Chromosomes Cancer 46:805–812

    CAS  PubMed  Google Scholar 

  • Ramp U, Caliskan E, Ebert T et al (2002) FHIT expression in clear cell renal carcinomas: versatility of protein levels and correlation with survival. J Pathol 196:430–436

    CAS  PubMed  Google Scholar 

  • Rassool FV, Le Beau MM, Shen ML et al (1996) Direct cloning of DNA sequences from the common fragile site region at chromosome band 3p14.2. Genomics 35:109–117

    CAS  PubMed  Google Scholar 

  • Roz L, Andriani F, Ferreira CG et al (2004) The apoptotic pathway triggered by the Fhit protein in lung cancer cell lines is not affected by Bcl-2 or Bcl-x(L) overexpression. Oncogene 23:9102–9110

    CAS  PubMed  Google Scholar 

  • Rugge M, Cassaro M, Farinati F et al (1996) Re: Helicobacter pylori and atrophic gastritis: importance of the cagA status. J Natl Cancer Inst 88:762–763

    CAS  PubMed  Google Scholar 

  • Sanchez Y, el-Naggar A, Pathak S et al (1994) A tumor suppressor locus within 3p14–p12 mediates rapid cell death of renal cell carcinoma in vivo. Proc Natl Acad Sci USA 91:3383–3387

    CAS  PubMed  Google Scholar 

  • Sard L, Accornero P, Tornielli S et al (1999) The tumor-suppressor gene FHIT is involved in the regulation of apoptosis and in cell cycle control. Proc Natl Acad Sci USA 96:8489–8492

    CAS  PubMed  Google Scholar 

  • Semba S, Han SY, Qin HR et al (2006) Biological functions of mammalian Nit1, the counterpart of the invertebrate NitFhit Rosetta stone protein, a possible tumor suppressor. J Biol Chem 281:28244–28253

    CAS  PubMed  Google Scholar 

  • Seraphin B (1992) The HIT protein family: a new family of proteins present in prokaryotes, yeast and mammals. DNA Seq 3:177–179

    CAS  PubMed  Google Scholar 

  • Shi Y, Zou M, Farid NR et al (2000) Association of FHIT (fragile histidine triad), a candidate tumour suppressor gene, with the ubiquitin-conjugating enzyme hUBC9. Biochem J 352(Pt 2):443–448

    CAS  PubMed  Google Scholar 

  • Shimada Y, Sato F, Watanabe G et al (2000) Loss of fragile histidine triad gene expression is associated with progression of esophageal squamous cell carcinoma, but not with the patient’s prognosis and smoking history. Cancer 89:5–11

    CAS  PubMed  Google Scholar 

  • Shiraishi T, Druck T, Mimori K et al (2001) Sequence conservation at human and mouse orthologous common fragile regions, FRA3B/FHIT and Fra14A2/Fhit. Proc Natl Acad Sci USA 98:5722–5727

    CAS  PubMed  Google Scholar 

  • Shridhar R, Shridhar V, Wang X et al (1996) Frequent breakpoints in the 3p14.2 fragile site, FRA3B, in pancreatic tumors. Cancer Res 56:4347–4350

    CAS  PubMed  Google Scholar 

  • Siprashvili Z, Sozzi G, Barnes LD et al (1997) Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci USA 94:13771–13776

    CAS  PubMed  Google Scholar 

  • Smith KJ, Levy DB, Maupin P et al (1994) Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res 54:3672–3675

    CAS  PubMed  Google Scholar 

  • Smith DI, McAvoy S, Zhu Y et al (2007) Large common fragile site genes and cancer. Semin Cancer Biol 17:31–41

    CAS  PubMed  Google Scholar 

  • Soma T, Kaganoi J, Kawabe A et al (2006) Nicotine induces the fragile histidine triad methylation in human esophageal squamous epithelial cells. Int J Cancer 119:1023–1027

    CAS  PubMed  Google Scholar 

  • Sorio C, Baron A, Orlandini S et al (1999) The FHIT gene is expressed in pancreatic ductular cells and is altered in pancreatic cancers. Cancer Res 59:1308–1314

    CAS  PubMed  Google Scholar 

  • Sozzi G, Veronese ML, Negrini M et al (1996) The FHIT gene 3p14.2 is abnormal in lung cancer. Cell 85:17–26

    CAS  PubMed  Google Scholar 

  • Sozzi G, Tornielli S, Tagliabue E et al (1997) Absence of Fhit protein in primary lung tumors and cell lines with FHIT gene abnormalities. Cancer Res 57:5207–5212

    CAS  PubMed  Google Scholar 

  • Sozzi G, Huebner K, Croce CM (1998) FHIT in human cancer. Adv Cancer Res 74:141–166

    CAS  PubMed  Google Scholar 

  • Stam RW, den Boer ML, Passier MM et al (2006) Silencing of the tumor suppressor gene FHIT is highly characteristic for MLL gene rearranged infant acute lymphoblastic leukemia. Leukemia 20:264–271

    CAS  PubMed  Google Scholar 

  • Stec-Michalska K, Antoszczyk S, Klupinska G et al (2005) Loss of FHIT expression in gastric mucosa of patients with family histories of gastric cancer and Helicobacter pylori infection. World J Gastroenterol 11:17–21

    CAS  PubMed  Google Scholar 

  • Su T, Suzui M, Wang L et al (2003) Deletion of histidine triad nucleotide-binding protein 1/PKC-interacting protein in mice enhances cell growth and carcinogenesis. Proc Natl Acad Sci USA 100:7824–7829

    CAS  PubMed  Google Scholar 

  • Sugimoto K, Yamada K, Miyagawa K et al (1997) Decreased or altered expression of the FHIT gene in human leukemias. Stem Cells 15:223–228

    CAS  PubMed  Google Scholar 

  • Sun J, Okumura H, Yearsley M et al (2009) Nit1 and Fhit tumor suppressor activities are additive. J Cell Biochem 107:1097–1106

    CAS  PubMed  Google Scholar 

  • Sutherland GR (1991) Chromosomal fragile sites. Genet Anal Tech Appl 8:161–166

    CAS  PubMed  Google Scholar 

  • Takada S, Morita K, Hayashi K et al (2005) Methylation status of fragile histidine triad (FHIT) gene and its clinical impact on prognosis of patients with multiple myeloma. Eur J Haematol 75:505–510

    CAS  PubMed  Google Scholar 

  • Tamura G, Sakata K, Nishizuka S et al (1997) Analysis of the fragile histidine triad gene in primary gastric carcinomas and gastric carcinoma cell lines. Genes Chromosomes Cancer 20:98–102

    CAS  PubMed  Google Scholar 

  • Tanaka H, Shimada Y, Harada H et al (1998) Methylation of the 5′ CpG island of the FHIT gene is closely associated with transcriptional inactivation in esophageal squamous cell carcinomas. Cancer Res 58:3429–3434

    CAS  PubMed  Google Scholar 

  • Thiagalingam S, Lengauer C, Leach FS et al (1996) Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet 13:343–346

    CAS  PubMed  Google Scholar 

  • Toledo G, Sola JJ, Lozano MD et al (2004) Loss of FHIT protein expression is related to high proliferation, low apoptosis and worse prognosis in non-small-cell lung cancer. Mod Pathol 17:440–448

    CAS  PubMed  Google Scholar 

  • Trapasso F, Krakowiak A, Cesari R et al (2003) Designed FHIT alleles establish that Fhit-induced apoptosis in cancer cells is limited by substrate binding. Proc Natl Acad Sci USA 100:1592–1597

    CAS  PubMed  Google Scholar 

  • Trapasso F, Pichiorri F, Gaspari M et al (2008) Fhit interaction with ferredoxin reductase triggers generation of reactive oxygen species and apoptosis of cancer cells. J Biol Chem 283:13736–13744

    CAS  PubMed  Google Scholar 

  • Tsujiuchi T, Sasaki Y, Kubozoe T et al (2002) Alterations of the Fhit gene in hepatocellular carcinomas induced by N-nitrosodiethylamine in rats. Mol Carcinog 34:19–24

    CAS  PubMed  Google Scholar 

  • Uboldi C, Guidi E, Roperto S et al (2006) Comparative genomic mapping of the bovine Fragile Histidine Triad (FHIT) tumour suppressor gene: characterization of a 2 Mb BAC contig covering the locus, complete annotation of the gene, analysis of cDNA and of physiological expression profiles. BMC Genomics 7:123

    PubMed  Google Scholar 

  • van den Berg A, Buys CH (1997) Involvement of multiple loci on chromosome 3 in renal cell cancer development. Genes Chromosomes Cancer 19:59–76

    PubMed  Google Scholar 

  • Vecchione A, Ishii H, Shiao YH et al (2001) Fez1/lzts1 alterations in gastric carcinoma. Clin Cancer Res 7:1546–1552

    CAS  PubMed  Google Scholar 

  • Virgilio L, Shuster M, Gollin SM et al (1996) FHIT gene alterations in head and neck squamous cell carcinomas. Proc Natl Acad Sci USA 93:9770–9775

    CAS  PubMed  Google Scholar 

  • Walboomers JM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19

    CAS  PubMed  Google Scholar 

  • Weiske J, Albring KF, Huber O (2007) The tumor suppressor Fhit acts as a repressor of beta-catenin transcriptional activity. Proc Natl Acad Sci USA 104:20344–20349

    CAS  PubMed  Google Scholar 

  • Wiech T, Nikolopoulos E, Weis R et al (2009) Genome-wide analysis of genetic alterations in Barrett’s adenocarcinoma using single nucleotide polymorphism arrays. Lab Invest 89:385–397

    CAS  PubMed  Google Scholar 

  • Wilke CM, Hall BK, Hoge A et al (1996) FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet 5:187–195

    CAS  PubMed  Google Scholar 

  • Wingo PA, Tong T, Bolden S (1995) Cancer statistics. CA Cancer J Clin 45:8–30

    CAS  PubMed  Google Scholar 

  • Wistuba II, Gazdar AF, Minna JD (2001) Molecular genetics of small cell lung carcinoma. Semin Oncol 28:3–13

    CAS  PubMed  Google Scholar 

  • Woenckhaus M, Merk J, Stoehr R et al (2008) Prognostic value of FHIT, CTNNB1, and MUC1 expression in non-small cell lung cancer. Hum Pathol 39:126–136

    CAS  PubMed  Google Scholar 

  • Wu Q, Shi H, Suo Z et al (2003) 5′-CpG island methylation of the FHIT gene is associated with reduced protein expression and higher clinical stage in cervical carcinomas. Ultrastruct Pathol 27:417–422

    PubMed  Google Scholar 

  • Yang HW, Piao HY, Taki T et al (1999) Pattern of FHIT gene expression in normal and leukaemic cells. Int J Cancer 81:897–901

    CAS  PubMed  Google Scholar 

  • Yang Q, Yoshimura G, Suzuma T et al (2001) Clinicopathological significance of fragile histidine triad transcription protein expression in breast carcinoma. Clin Cancer Res 7:3869–3873

    CAS  PubMed  Google Scholar 

  • Yang Q, Yoshimura G, Sakurai T et al (2002) The Fragile Histidine Triad gene and breast cancer. Med Sci Monit 8:RA140–RA144

    PubMed  Google Scholar 

  • Yin DT, Lu XB, Dong MM et al (2004) Correlation of FHIT expression to cell proliferation and metastasis of laryngeal squamous cell carcinoma. Ai Zheng 23:1338–1341

    CAS  PubMed  Google Scholar 

  • Yin C, Shen LJ, Xie SM et al (2005) Expressions of FHIT and cyclin D1/CDK4 in oral cancer and oral precancerous lesions. Di Yi Jun Yi Da Xue Xue Bao 25:812–814

    CAS  PubMed  Google Scholar 

  • Yoshino K, Enomoto T, Nakamura T et al (1998) Aberrant FHIT transcripts in squamous cell carcinoma of the uterine cervix. Int J Cancer 76:176–181

    CAS  PubMed  Google Scholar 

  • Zawacka-Pankau J, Podhajska AJ (2007) Expression and simple, one-step purification of fragile histidine triad (Fhit) tumor suppressor mutant forms in Escherichia coli and their interaction with protoporphyrin IX. Biotechnol Lett 29:877–883

    CAS  PubMed  Google Scholar 

  • Zhao P, Lam AK, Lu YL et al (2006) Aberrant FHIT protein expression in classical Hodgkin’s lymphoma: a potential marker. Pathology 38:399–402

    CAS  PubMed  Google Scholar 

  • Zhao P, Lu Y, Zhong M et al (2008) Inverse correlation of aberrant expression of fragile histidine triad (FHIT) protein with cyclin D1 protein and prognosis in Chinese patients with cholangiocarcinoma. Acta Oncol 47:1557–1563

    CAS  PubMed  Google Scholar 

  • Zheng S, Ma X, Zhang L et al (2004) Hypermethylation of the 5′ CpG island of the FHIT gene is associated with hyperdiploid and translocation-negative subtypes of pediatric leukemia. Cancer Res 64:2000–2006

    CAS  PubMed  Google Scholar 

  • Zochbauer-Muller S, Fong KM, Maitra A et al (2001) 5′ CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res 61:3581–3585

    CAS  PubMed  Google Scholar 

  • Zochbauer-Muller S, Gazdar AF, Minna JD (2002) Molecular pathogenesis of lung cancer. Annu Rev Physiol 64:681–708

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MIH is thankful to the Department of Science and Technology (DST) for the fellowship. FA is thankful to the Council of Scientific and Industrial Research and DST for the grant.

Conflict of interest statement

There is no conflict of interest for any of the authors including any financial, personal or other relationships with other people or organizations within 3 years of beginning the work submitted that could inappropriately influence the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizan Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, M.I., Naiyer, A. & Ahmad, F. Fragile histidine triad protein: structure, function, and its association with tumorogenesis. J Cancer Res Clin Oncol 136, 333–350 (2010). https://doi.org/10.1007/s00432-009-0751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-009-0751-9

Keywords

Navigation