Skip to main content

Advertisement

Log in

Overexpression of myocyte enhancer factor 2 and histone hyperacetylation in hepatocellular carcinoma

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

It has been indicated that activated hepatic stellate cells (HSCs) play key roles on the pathogenesis of hepatocellular carcinoma (HCC). The purpose of the study was to investigate the potential mechanism in it.

Methods

Activation of HSCs, the expression of myocyte enhancer factor 2 (MEF2), class II histone deacetylases (II HDACs) and histone acetylation were analyzed in specimens of primary HCCs, cirrhotic and normal livers. Activated HSCs were identified using anti-a-smooth muscle actin (a-SMA) by Immunohistochemistry (IHC). The levels of expression of MEF2A, MEF2C and II HDACs mRNA and protein were measured by real time quantitative PCR and western blot (WB). Histone acetylation was assessed using anti-acetyl-histone H3, -H4 by WB and IHC. A P value < 0.05 was considered statistically significant.

Results

A-SMA positive activated HSCs were more prominent in HCCs and cirrhotic livers than in normal livers, accompanied by marked expression of MEF2A and MEF2C. The expression of MEF2A, MEF2C and II HDACs, both mRNA and protein, were much more enhanced in HCCs than those in cirrhotic and normal livers (P < 0.05). Histone H3 and H4 were hyperacetylated in HCCs compared with those in cirrhotic and normal livers (P < 0.05). The correlation coefficients between the expression of MEF2 and II HDACs, acetyl-histones were all beyond 0.5.

Conclusions

These data showed a potential molecular mechanism that activated HSCs participate in the pathogenesis of HCCs by overexpression of MEF2 and its consequent impact on histone hyperacetylation. Further investigations aimed at interfering MEF2 expression are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Archer SY, Hodin RA (1999) Histone acetylation and cancer. Curr Opin Genet Dev 9:171–174

    Article  PubMed  CAS  Google Scholar 

  • Black BL, Olson EN (1998) Transcriptional control of muscle development by myocyte enhancer factor-2(MEF2) proteins. Annu Rev Cell Dev Biol 14:167–196

    Article  PubMed  CAS  Google Scholar 

  • Borghi S, Molinari S, Razzini G, Parise F, Battini R, Ferrari S (2001) The nuclear localization domain of the MEF2 family of transcription factors shows member-specific features and mediates the nuclear import of histone deacetylase 4. J Cell Sci 114:4477–4483

    PubMed  CAS  Google Scholar 

  • Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391:597–601

    Article  PubMed  CAS  Google Scholar 

  • Campbell JS, Hughes SD, Gilbertson DG, Palmer TE, Holdren MS, Haran AC et al (2005) Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci 102:3389–3394

    Article  PubMed  CAS  Google Scholar 

  • Clayton AL, Hazzalin CA, Mahadevan LC (2006) Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 23:289–296

    Article  PubMed  CAS  Google Scholar 

  • Desmouliere A, Guyot C, Gabbiani G (2004) The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol 48:509–517

    Article  PubMed  CAS  Google Scholar 

  • Forner A, Hessheimer AJ, Isabel Real M, Bruix J (2006) Treatment of hepatocellular carcinoma. Crit Rev Oncol Hematol 60:89–98

    Article  PubMed  Google Scholar 

  • Geerts A (2001) History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 21:311–335

    Article  PubMed  CAS  Google Scholar 

  • Gotzmann J, Fischer AN, Zojer M, Mikula M, Proell V, Huber H et al (2006) A crucial function of PDGF in TGF-beta-mediated cancer progression of hepatocytes. Oncogene 25:3170–3185

    Article  PubMed  CAS  Google Scholar 

  • Gruffat H, Manet E, Sergeant A (2002) MEF2-mediated recruitment of class II HDAC at the EBV immediate early gene BZLF1 links latency and chromatin remodeling. EMBO Rep 3:141–146

    Article  PubMed  CAS  Google Scholar 

  • Han A, He J, Wu Y, Liu JO, Chen L (2005) Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2. J Mol Biol 345:91–102

    Article  PubMed  CAS  Google Scholar 

  • Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89:341–347

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Zhang D, Chen J, Lin C, Liu Q (2004) Involvement of histone hypoacetylation in Ni2+-induced bcl- 2 down-regulation and human hepatoma cell apoptosis. J Biol Inorg Chem 9:713–723

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Chen J, Shi Y, Jia J, Wang Z (2005a) Histone hypoacetylation is involved in 1,10-phenanthroline-Cu2+-induced human hepatoma cell apoptosis. J Biol Inorg Chem 10:190–198

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Chen J, Shi Y, Jia J, Zhang Y (2005b) Curcumin-induced histone hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol 69:1205–1213

    Article  PubMed  CAS  Google Scholar 

  • Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SW et al (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7:437–443

    Article  PubMed  Google Scholar 

  • Kim H, Lee JE, Kim BY, Cho EJ, Kim ST, Youn HD (2005) Menin represses JunD transcriptional activity in protein kinase C theta-mediated Nur77 expression. Exp Mol Med 37:466–475

    PubMed  CAS  Google Scholar 

  • Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S et al (1998) Tissue microarrays for high-throughput molecular profiling of tumour specimens. Nat Med 4:844–847

    Article  PubMed  CAS  Google Scholar 

  • Kurdistani SK, Tavazoie S, Grunstein M (2004) Mapping global histone acetylation patterns to gene expression. Cell 117:721–733

    Article  PubMed  CAS  Google Scholar 

  • Liang T, Xu S, Yu J, Shen K, Li D, Zheng S (2005) Activation pattern of mitogen-activated protein kinases in early phase of different size liver isografts in rats. Liver Transplant 11:1527–1532

    Article  Google Scholar 

  • Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407

    Article  PubMed  CAS  Google Scholar 

  • Ma K, Chan JK, Zhu G, Wu Z (2005) Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. Mol Cell Biol 25:3575–3582

    Article  PubMed  CAS  Google Scholar 

  • Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg ME (1999) Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286:785–790

    Article  PubMed  CAS  Google Scholar 

  • Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202

    Article  PubMed  CAS  Google Scholar 

  • McKinsey TA, Zhang CL, Olson EN (2001) Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev 11:497–504

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin F, La Thangue NB (2004) Histone deacetylase inhibitors open new doors in cancer therapy. Biochem Pharmacol 68:1139–1144

    Article  PubMed  CAS  Google Scholar 

  • Mikula M, Proell V, Fischer AN, Mikulits W (2006) Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-beta dependent fashion. J Cell Physiol 209:560–567

    Article  PubMed  CAS  Google Scholar 

  • Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51

    Article  PubMed  CAS  Google Scholar 

  • Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumor stroma in cancer. Nat Rev Cancer 4:839–849

    Article  PubMed  CAS  Google Scholar 

  • Naya FJ, Olson E (1999) MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol 11:683–688

    Article  PubMed  CAS  Google Scholar 

  • Naya FJ, Black BL, Wu H, Bassel-Duby R, Richardson JA, Hill JA, Olson EN (2002) Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat Med 8:1303–1309

    Article  PubMed  CAS  Google Scholar 

  • Ooi LP, Crawford DH, Gotley DC, Clouston AD, Strong RW, Gobe GC et al (1997) Evidence that “myofibroblast-like” cells are the cellular source of capsular collagen in hepatocellular carcinoma. J Hepatol 26:798–807

    Article  PubMed  CAS  Google Scholar 

  • Park YN, Yang CP, Cubukcu O, Thung SN, Theise ND (1997) Hepatic stellate cell activation in dysplastic nodules: evidence for an alternate hypothesis concerning human hepatocarcinogenesis. Liver 17:271–274

    PubMed  CAS  Google Scholar 

  • Pinzani M, Rombouts K, Colagrande S (2005) Fibrosis in chronic liver diseases: diagnosis and management. J Hepatol 42(Suppl 1):S22–S36

    Article  PubMed  Google Scholar 

  • Santos-Rosa H, Caldas C (2005) Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer 41:2381–2402

    Article  PubMed  CAS  Google Scholar 

  • Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK et al (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266

    Article  PubMed  CAS  Google Scholar 

  • Taddei A, Roche D, Bickmore WA, Almouzni G (2005) The effects of histone deacetylase inhibitors on heterochromatin: implications for anticancer therapy? EMBO Rep 6:520–524

    Article  PubMed  CAS  Google Scholar 

  • Tokusashi Y, Asai K, Tamakawa S, Yamamoto M, Yoshie M, Yaginuma Y et al (2005) Expression of NGF in hepatocellular carcinoma cells with its receptors in non-tumor cell components. Int J Cancer 114:39–45

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Tang X, Gong X, Albanis E, Friedman SL, Mao Z (2004) Regulation of hepatic stellate cell activation and growth by transcription factor myocyte enhancer factor 2. Gastroenterology 127:1174–1188

    Article  PubMed  CAS  Google Scholar 

  • Wen J, Zhang Y, Chen X, Shen L, Li GC, Xu M (2004) Enhancement of diallyl disulfide-induced apoptosis by inhibitors of MAPKs in human HepG2 hepatoma cells. Biochem Pharmacol 68:323–331

    Article  PubMed  CAS  Google Scholar 

  • Witz IP, Levy-Nissenbaum O (2006) The tumor microenvironment in the post-PAGET era. Cancer Lett 242:1–10

    Article  PubMed  CAS  Google Scholar 

  • Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y (1996) A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Basic Research Program of China (2003CB515501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShuSen Zheng.

Additional information

Supported by the National Basic Research Program of China; Grant number: 2003CB5155001; Science and Technology Bureau of Zhejiang Province Grant numbers: 2007C33075, 2007C24001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, X., Wu, L., Liang, T. et al. Overexpression of myocyte enhancer factor 2 and histone hyperacetylation in hepatocellular carcinoma. J Cancer Res Clin Oncol 134, 83–91 (2008). https://doi.org/10.1007/s00432-007-0252-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-007-0252-7

Keywords

Navigation