Skip to main content
Log in

Potential activity of paclitaxel, vinorelbine and gemcitabine in anaplastic thyroid carcinoma

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Anaplastic thyroid carcinoma (ATC) has a rapidly fatal course in the mostly elderly patients with a median survival after diagnosis of 4–12 months. Activity of commonly used chemotherapy (doxorubicin) is low, thus more active compounds need to be introduced into the therapeutic concept of ATC. Recently, based on preclinical data Ain et al. conducted a clinical phase II study with paclitaxel 96 h infusion in ATC achieving a promising response rate of 53%. To further improve therapeutic options in ATC, we evaluated the activity of topotecan, oxaliplatin, vinorelbine, gemcitabine and paclitaxel in comparision to cisplatin and doxorubicin (1 and 96 h drug exposure) alone or in combination in the ATC cell lines SW1736 and 8505C. IC50 values were determined by the sulforhodamine B assay, potential clinical activity was estimated by relative antitumor activity (RAA) and drug interaction was analyzed using a parametric response surface approach (Greco model) of the Loewe additivity. Duration of drug effect was estimated by regrowth kinetics. We found paclitaxel, vinorelbine and gemcitabine active in ATC with RAA (1 h drug exposure) ranging from 86 to 454, 15 to 17 and 31 to 140, respectively. The activity of doxorubicin and cisplatin was moderate with RAA ranging from 1.4 to 2.2 and 0.2 to 0.3, respectively. Combined drug exposure of gemcitabine/paclitaxel and gemcitabine/vinorelbine was synergistic with a Loewe index > 0. However, these results did not reach statistical significance with p > 0.05. At clinically relevant drug concentrations paclitaxel, gemcitabine and vinorelbine but not oxaliplatin exerted a sustained growth inhibition after cessation of drug exposure for the complete assay time of 15 days. In conclusion, paclitaxel, gemcitabine and vinorelbine but not topotecan or oxaliplatin appeared to be active in anaplastic thyroid carcinoma based on RAA or growth delay at clinically relevant drug concentrations. Combinations of vinorelbine/gemcitabine and paclitaxel/gemcitabine exerted a trend to synergy. Thus, further evaluation of paclitaxel, vinorelbine and gemcitabine alone or in combination with ATC seems warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ATC:

Anaplastic thyroid carcinoma

RAA:

Relative antitumor activity

FBS:

Fetal bovine serum

SRB:

Sulforhodamine B

TCA:

10% trichloric acid

PR:

Partial response

CR:

Complete response

References

  • Abbruzzese JL, Grunewald R, Weeks EA, Gravel D, Adams T, Nowak B, Mineishi S, Tarassoff P, Satterlee W, Raber MN et al (1991) A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J Clin Oncol 9:491–498

    PubMed  CAS  Google Scholar 

  • Ain KB, Tofiq S, Taylor KD (1996) Antineoplastic activity of taxol against human anaplastic thyroid carcinoma cell lines in vitro and in vivo. J Clin Endocrinol Metab 81:3650–3653

    Article  PubMed  CAS  Google Scholar 

  • Ain KB, Egorin MJ, DeSimone PA (2000) Treatment of anaplastic thyroid carcinoma with paclitaxel: phase 2 trial using ninety-six-hour infusion. Collaborative anaplastic thyroid cancer health intervention trials (CATCHIT) group. Thyroid 10:587–594

    Article  PubMed  CAS  Google Scholar 

  • Aust G, Eichler W, Laue S, Lehmann I, Heldin NE, Lotz O, Scherbaum WA, Dralle H, Hoang-Vu C (1997) CD97: a dedifferentiation marker in human thyroid carcinomas. Cancer Res 57:1798–1806

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV, Giannakakou P, Wojtowicz M, Romanova LY, Ain KB, Bates SE, Fojo T (1998) Effects of p53-expressing adenovirus on the chemosensitivity and differentiation of anaplastic thyroid cancer cells. J Clin Endocrinol Metab 83:2516–2522

    Article  PubMed  CAS  Google Scholar 

  • Cvitkovic E (1998) Ongoing and unsaid on oxaliplatin: the hope. Br J Cancer 77(Suppl 4):8–11

    PubMed  CAS  Google Scholar 

  • Extra JM, Marty M, Brienza S, Misset JL (1998) Pharmacokinetics and safety profile of oxaliplatin. Semin Oncol 25:13–22

    PubMed  CAS  Google Scholar 

  • Fridborg H, Nygren P, Larsson R (1995) Relationship between pharmacokinetic parameters in patients and cytotoxicity in vitro of standard and investigational anticancer drugs. Anticancer Drugs 6:64–69

    Article  PubMed  CAS  Google Scholar 

  • Giaccone G (1995) New drugs in non-small cell lung cancer. An overview. Lung Cancer 12(Suppl 1):S155–S162

    Article  PubMed  Google Scholar 

  • Giuffrida D, Gharib H (2000) Anaplastic thyroid carcinoma: current diagnosis and treatment. Ann Oncol 11:1083–1089

    Article  PubMed  CAS  Google Scholar 

  • Hoskin PJ, Harmer C (1987) Chemotherapy for thyroid cancer. Radiother Oncol 10:187–194

    Article  PubMed  CAS  Google Scholar 

  • Huizing MT, Keung AC, Rosing H, van der Kuij V, ten Bokkel Huinink WW, Mandjes IM, Dubbelman AC, Pinedo HM, Beijnen JH (1993) Pharmacokinetics of paclitaxel and metabolites in a randomized comparative study in platinum-pretreated ovarian cancer patients. J Clin Oncol 11:2127–2135

    PubMed  CAS  Google Scholar 

  • Kitazono M, Bates S, Fok P, Fojo T, Blagosklonny MV (2002) The histone deacetylase inhibitor FR901228 (desipeptide) restores expression and function of pseudo-null p53. Cancer Biol Ther 1:665–668

    PubMed  CAS  Google Scholar 

  • Krikorian A, Breillout F (1991) Vinorelbine (Navelbine). A new semisynthetic vinca alkaloid. Onkologie 14:7–12

    Article  PubMed  CAS  Google Scholar 

  • Louvet C, Andre T, Lledo G, Hammel P, Bleiberg H, Bouleuc C, Gamelin E, Flesch M, Cvitkovic E, de Gramont A (2002) Gemcitabine combined with oxaliplatin in advanced pancreatic adenocarcinoma: final results of a GERCOR multicenter phase II study. J Clin Oncol 20:1512–1518

    Article  PubMed  CAS  Google Scholar 

  • Marquet P, Lachatre G, Debord J, Eichler B, Bonnaud F, Nicot G (1992) Pharmacokinetics of vinorelbine in man. Eur J Clin Pharmacol 42:545–547

    Article  PubMed  CAS  Google Scholar 

  • Newell DR (2001) Flasks, fibres and flanks—pre-clinical tumour models for predicting clinical antitumour activity. Br J Cancer 84:1289–1290

    Article  PubMed  CAS  Google Scholar 

  • Ohe Y, Nakagawa K, Fujiwara Y, Sasaki Y, Minato K, Bungo M, Niimi S, Horichi N, Fukuda M, Saijo N (1989) In vitro evaluation of the new anticancer agents KT6149, MX-2, SM5887, menogaril, and liblomycin using cisplatin-resistant or adriamycin-resistant human cancer cell lines. Cancer Res 49:4098–4102

    PubMed  CAS  Google Scholar 

  • Ormrod D, Spencer CM (1999) Topotecan: a review of its efficacy in small cell lung cancer. Drugs 58:533–551

    Article  PubMed  CAS  Google Scholar 

  • Raymond E, Faivre S, Coudray AM, Louvet C, Gespach C (2001) Preclinical studies of oxaliplatin in combination chemotherapy. Bull Cancer 88(Spec No):S26–S34

    PubMed  Google Scholar 

  • Rogers BB (1993) Taxol: a promising new drug of the 90s. Oncol Nurs Forum 20:1483–1489

    PubMed  CAS  Google Scholar 

  • Schlumberger M, Parmentier C, Delisle MJ, Couette JE, Droz JP, Sarrazin D (1991) Combination therapy for anaplastic giant cell thyroid carcinoma. Cancer 67:564–566

    Article  PubMed  CAS  Google Scholar 

  • Schroyens W, Tueni E, Dodion P, Bodecker R, Stoessel F, Klastersky J (1990) Validation of clinical predictive value of in vitro colorimetric chemosensitivity assay in head and neck cancer. Eur J Cancer 26:834–838

    Article  PubMed  CAS  Google Scholar 

  • Shimaoka K, Schoenfeld DA, DeWys WD, Creech RH, DeConti R (1985) A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer 56:2155–2160

    Article  PubMed  CAS  Google Scholar 

  • Sierra M, Gamboa-Dominguez A, Herrera MF, Barredo-Prieto B, Alvarado de la Barrera C, Llorente L, Perez-Enriquez B, Rivera R, Gonzalez O, Rull JA (1997) Anaplastic carcinoma of the thyroid at the Instituto Nacional de la Nutricion Salvador Zubiran. Rev Invest Clin 49:97–103

    PubMed  CAS  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Tonato M, Mosconi AM, Martin C (1995) Safety profile of gemcitabine. Anticancer Drugs 6(Suppl 6):27–32

    Article  PubMed  CAS  Google Scholar 

  • Voigt W, Bulankin A, Muller T, Schoeber C, Grothey A, Hoang-Vu C, Schmoll HJ (2000) Schedule-dependent antagonism of gemcitabine and cisplatin in human anaplastic thyroid cancer cell lines. Clin Cancer Res 6:2087–2093

    PubMed  CAS  Google Scholar 

  • Xu G, Pan J, Martin C, Yeung SC (2001) Angiogenesis inhibition in the in vivo antineoplastic effect of manumycin and paclitaxel against anaplastic thyroid carcinoma. J Clin Endocrinol Metab 86:1769–1777

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Voigt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voigt, W., Kegel, T., Weiss, M. et al. Potential activity of paclitaxel, vinorelbine and gemcitabine in anaplastic thyroid carcinoma. J Cancer Res Clin Oncol 131, 585–590 (2005). https://doi.org/10.1007/s00432-005-0673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-005-0673-0

Keywords

Navigation