Skip to main content
Log in

Zellweger syndrome and secondary mitochondrial myopathy

  • Short Communication
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Defects in peroxisomes such as those associated with Zellweger syndrome (ZS) can influence diverse intracellular metabolic pathways, including mitochondrial functioning. We report on an 8-month-old female infant and a 6-month-old female infant with typical clinical, radiological and laboratory features of Zellweger syndrome; light microscopic and ultrastructural evidence of mitochondrial pathology in their muscle biopsies; and homozygous pathogenic mutations of the PEX16 gene (c.460 + 5G > A) and the PEX 12 gene (c.888_889 del p.Leu297Thrfs*12), respectively. Additionally, mitochondrial respiratory chain enzymology analysis in the first girl showed a mildly low activity in complexes II–III and IV. We also review five children previously reported in the literature with a presumptive diagnosis of ZS and additional mitochondrial findings in their muscle biopsies. In conclusion, this is the first study of patients with a molecularly confirmed peroxisomal disorder with features of a concomitant mitochondrial myopathy and underscores the role of secondary mitochondrial dysfunction in Zellweger syndrome, potentially contributing to the clinical phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

CGH:

Comparative genomic hybridization

CSF:

Cerebrospinal fluid

MDS:

Mitochondrial depletion syndrome

MRI:

Magnetic resonance imaging

NG:

Nasogastric

PBD:

Peroxisomal biogenesis disorders

PEX:

Peroxines

PMP:

Peroxisomal membrane proteins

RCE:

Respiratory chain enzymes

SMA:

Spinal muscular atrophy

SMN:

Survival motor neuron

VLCFA:

Very long chain fatty acids

VSD:

Ventricular septal defect

ZS:

Zellweger syndrome

References

  1. Ahn JK, Lev D, Leshinsky-Silver E, Ginzberg M, Lerman-Sagie T (2003) A new autosomal recessive syndrome with Zellweger-like manifestations. Am J Med Genet A 119A:352–355

    Article  PubMed  Google Scholar 

  2. Baumgart E, Vanhorebeek I, Grabenbauer M, Borgers M, Declercq PE, Fahimi HD, Baes M (2001) Mitochondrial alterations caused by defective peroxisomal biogenesis in a mouse model for Zellweger syndrome (PEX5 knock out mouse). Am J Pathol 159:1477–1494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Baumgartner MR, Verhoeven NM, Jakobs C, Roels F, Espeel M, Martinez M, Rabier D, Wanders RJ, Saudubray JM (1998) Defective peroxisome biogenesis with a neuromuscular disorder resembling Werdnig-Hoffmann disease. Neurology 51:1427–1432

    Article  CAS  PubMed  Google Scholar 

  4. Chang CC, Gould SJ (1998) Phenotype-genotype relationships in complementation group 3 of the peroxisome-biogenesis disorders. Am J Hum Genet 63(5):1294–1306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Fujiki Y, Yagita Y, Matsuzaki T (2012) Peroxisome biogenesis disorders: molecular basis for impaired peroxisomal membrane assembly in metabolic functions and biogenesis of peroxisomes in health and disease. BiochimBiophysActa 1822:1337–1342

    CAS  Google Scholar 

  6. Goldfischer S, Moore CL, Johnson AB, Spiro AJ, Valsamis MP, Wisniewski HK, Ritch RH, Norton WT, Gartner LM, RapinI (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182:62–4.11

    Article  CAS  PubMed  Google Scholar 

  7. Gould SJ, Raymond GV, Valle D (2001) The peroxisome biogenesis disorders. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. 8th 255 ed. McGraw-Hill, New York, pp 3181–218

    Google Scholar 

  8. Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI (2007) Mitochondrial disease: a practical approach for primary care physicians. Pediatrics 120:1326–1333

    Article  PubMed  Google Scholar 

  9. Hargreaves IP, Duncan AJ, Wu L, Agrawal A, Land JM, Heales SJ (2007) Inhibition of mitochondrial complex IV leads to secondary loss of complex II–III activity: Implications for the pathogenesis and treatment of mitochondrial encephalomyopathies. Mitochondrion 7:284–287

    Article  CAS  PubMed  Google Scholar 

  10. Heales SJ, Bolanos JP, Brand MP, Clark JB, Land JM (1996) Mitochondrial damage: an important feature in a number of inborn errors of metabolism. J Inher Metab Dis 19:140–142

    Article  CAS  PubMed  Google Scholar 

  11. Hirano M, Angelini C, Montagna P, Hays AP, Tanji K, Mitsumoto H, Gordon PH, Naini AB, DiMauro S, Rowland LP (2008) Amyotrophic lateral sclerosis with ragged-red fibers. Arch Neurol 65:403–406

    Article  PubMed  Google Scholar 

  12. Katsetos CD, Koutzaki S, Melvin JJ (2013) Mitochondrial dysfunction in neuromuscular disorders. SeminPediatrNeurol 20:202–215

    Google Scholar 

  13. Müller-Höcker J, Walther JU, Bise K, Pongratz D, Hübner G (1984) Mitochondrial myopathy with loosely coupled oxidative phosphorylation in a case of Zellweger syndrome. A cytochemical-ultrastructural study. Virchows Arch B Cell PatholInclMolPathol 45:25–38.12

    Google Scholar 

  14. Okun JC, Horster F, Farkas LM, Feyh P, Hinz A, Sauer S, Hoffmann GF, Unsicker K, Mayatepek E, Kolker S (2002) Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. J Biol Chem 277:14674–14680

    CAS  PubMed  Google Scholar 

  15. Sarnat HB, Machin G, Darwish HZ, Rubin SZ (1983) Mitochondrial myopathy of cerebro-hepatorenal (Zellweger) syndrome. Can J Neurol Sci 10:170–177

    CAS  PubMed  Google Scholar 

  16. Schonfeld P, Reiser G (2006) Rotenone-like action of the branched chain phytanic acid induces oxidative stress in mitochondria. J Biol Chem 281:7136–7142

    Article  PubMed  Google Scholar 

  17. Shaheen R, Al-Dirbashi OY, Al-Hassnan ZN, Al-Owain M, Makhsheed N, Basheeri F, Seidahmed MZ, Salih MA, Faqih E, Zaidan H, Al-Sayed M, Rahbeeni Z, Al-Sheddi T, Hashem M, Kurdi W, Shimozawa N, Alkuraya FS (2011) Clinical, biochemical and molecular characterization of peroxisomal diseases in Arabs. Clin Genet 79(1):60–70

    Article  CAS  PubMed  Google Scholar 

  18. Steinberg SJ, Raymond GV, Braverman NE, Moser AB. Peroxisome biogenesis disorders, Zellweger syndrome spectrum. Updated 2012 May 10 GeneReviews: available at http://www.ncbi.nlm.nih.gov/books/NBK1448/

  19. Wanders RJ, Waterham HR (2005) Peroxisomal disorders I: biochemistry and genetics of peroxisome biogenesis disorders. Clin Genet 67(2):107–133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Mrs Cathy Timson (Dubowitz Neuromuscular Centre) and Dr Glenn Anderson (Histopathology Department, Great Ormond Street Hospital) for their valuable contribution to electron microscopy. We wish to thank the two families who allowed us to report these two infants and provided us with informed consent for their inclusion in our study.

Conflicts of interest

We have not received any funds for this work. We received approval from our institutions for this study. We have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kinali.

Additional information

Communicated by Beat Steinmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salpietro, V., Phadke, R., Saggar, A. et al. Zellweger syndrome and secondary mitochondrial myopathy. Eur J Pediatr 174, 557–563 (2015). https://doi.org/10.1007/s00431-014-2431-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-014-2431-2

Keywords

Navigation