Skip to main content
Log in

DNA hypomethylation, transient neonatal diabetes, and prune belly sequence in one of two identical twins

  • Original Paper
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

One known genetic mechanism for transient neonatal diabetes is loss of methylation at 6q24. The etiology of prune belly sequence is unknown but a genetic defect, affecting the mesoderm from which the triad abdominal muscle hypoplasia, urinary tract abnormalities, and cryptorchidism develop, has been suggested. We investigated a family, including one twin, with transient neonatal diabetes and prune belly sequence. Autoantibody tests excluded type 1 diabetes. Microsatellite marker analysis confirmed the twins being monozygotic. We identified no mutations in ZFP57, KCNJ11, ABCC8, GCK, HNF1A, HNF1B, HNF3B, IPF1, PAX4, or ZIC3. The proband had loss of methylation at the 6q24 locus TNDM and also at the loci IGF2R, DIRAS3, and PEG1, while the other family members, including the healthy monozygotic twin, had normal findings. The loss of methylation on chromosome 6q24 and elsewhere may indicate a generalized maternal hypomethylation syndrome, which accounts for both transient neonatal diabetes and prune belly sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BWS:

Beckwith–Wiedemann syndrome

GAD:

Glutamic acid decarboxylase

IA-2:

Protein tyrosine phosphatase-like molecule

LOM:

Loss of methylation

MEST:

Mesoderm-specific transcript

MLPA:

Multiplex ligation-dependent probe amplification

MSP:

Methylation-specific PCR

NDM:

Neonatal diabetes mellitus

OGTT:

Oral glucose tolerance test

PBS:

Prune belly sequence

pUPD:

Paternal uniparental isodisomy

TNDM:

Transient neonatal diabetes mellitus

References

  1. Babenko AP, Polak M, Cavé H et al (2006) Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 355:456–466

    Article  CAS  PubMed  Google Scholar 

  2. Balaji KC, Patil A, Townes PL et al (2000) Concordant prune belly syndrome in monozygotic twins. Urology 55:949

    Article  CAS  PubMed  Google Scholar 

  3. Bliek J, Alders M, Maas SM, Oostra R-J, Mackay DJG, vd Lip K, Callaway JLA, Brooks A, vt Padje S, Westerveld A, Leschot NJ, Mannens MMAM (2009) Lessons from BWS twins: complex maternal and paternal hypomethylation and a common source of haematopoietic stem-cells. Eur J Hum Genet 17:611–619

    Google Scholar 

  4. Bogart MM, Arnold HE, Greer KE (2006) Prune-belly syndrome in two children and review of the literature. Pediatr Dermatol 23:342–345

    Article  PubMed  Google Scholar 

  5. Cave H, Polak M, Drunat S et al (2000) Refinement of the 6q chromosomal region implicated in transient neonatal diabetes. Diabetes 49:108–113

    Article  CAS  PubMed  Google Scholar 

  6. Gloyn AL, Pearson ER, Antcliff JF et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849

    Article  CAS  PubMed  Google Scholar 

  7. Greskovich FJ 3rd, Nyberg LM Jr (1988) The prune belly syndrome: a review of its etiology, defects, treatment and prognosis. J Urol 140:707–712

    PubMed  Google Scholar 

  8. Howell CY, Bestor TH, Ding F et al (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104:829–838

    Article  CAS  PubMed  Google Scholar 

  9. Iafusco D, Stazi MA, Cotichini R et al (2002) Permanent diabetes mellitus in the first year of life. Diabetologia 45:798–804

    Article  CAS  PubMed  Google Scholar 

  10. Kant SG, van der Weij AM, Oostdijk W, Wit JM, Robinson DO, Temple IK, Mackay DJG (2005) Monozygous triplets discordant for transient neonatal diabetes mellitus and for imprinting of the TNDM DMR. Hum Genet 117:298–401

    Article  Google Scholar 

  11. Kiefer JC (2007) Epigenetics in development. Dev Dyn 236:1144–1156

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi H, Sato A, Otsu E et al (2007) Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 16:2542–2551

    Article  CAS  PubMed  Google Scholar 

  13. Mackay DJ, Boonen SE, Clayton-Smith J et al (2006) A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus. Hum Genet 120:262–269

    Article  CAS  PubMed  Google Scholar 

  14. Mackay DJ, Callaway JL, Marks SM et al (2008) Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 40:949–951

    Article  CAS  PubMed  Google Scholar 

  15. Manivel JC, Pettinato G, Reinberg Y et al (1989) Prune belly syndrome: clinicopathologic study of 29 cases. Pediatr Pathol 9:691–711

    Article  CAS  PubMed  Google Scholar 

  16. Murray PJ, Thomas K, Mulgrew CJ et al (2008) Whole gene deletion of the hepatocyte nuclear factor-1beta gene in a patient with the prune-belly syndrome. Nephrol Dial Transplant 23:2412–2415

    Article  CAS  PubMed  Google Scholar 

  17. Pearson ER, Boj SF, Steele AM et al (2007) Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med 4:e118

    Article  PubMed  Google Scholar 

  18. Ramasamy R, Haviland M, Woodard JR, Barone JG (2005) Patterns of inheritance in familial prune belly syndrome. Urology 65:1227

    Article  PubMed  Google Scholar 

  19. Shield JP (2000) Neonatal diabetes: new insights into aetiology and implications. Horm Res 53(Suppl 1):7–11

    Article  CAS  PubMed  Google Scholar 

  20. Shield JP, Gardner RJ, Wadsworth EJ et al (1997) Aetiopathology and genetic basis of neonatal diabetes. Arch Dis Child Fetal Neonatal Ed 76:F39–F42

    Article  CAS  PubMed  Google Scholar 

  21. Temple IK, Gardner RJ, Robinson DO et al (1996) Further evidence for an imprinted gene for neonatal diabetes localised to chromosome 6q22–q23. Hum Mol Genet 5:1117–1121

    Article  CAS  PubMed  Google Scholar 

  22. Temple IK, Gardner RJ, Mackay DJ et al (2000) Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes. Diabetes 49:1359–1366

    Article  CAS  PubMed  Google Scholar 

  23. Temple IK, James RS, Crolla JA et al (1995) An imprinted gene(s) for diabetes? Nat Genet 9:110–218

    Article  CAS  PubMed  Google Scholar 

  24. Weksberg R, Shuman C, Caluseriu O et al (2002) Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet 11:1317–1325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the University of Bergen, Haukeland University Hospital, Innovest, Translational Medicine Fund, the Research Council of Norway, and Diabetes UK for financial support.

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pål Rasmus Njølstad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laborie, L.B., Mackay, D.J.G., Temple, I.K. et al. DNA hypomethylation, transient neonatal diabetes, and prune belly sequence in one of two identical twins. Eur J Pediatr 169, 207–213 (2010). https://doi.org/10.1007/s00431-009-1008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-009-1008-y

Keywords

Navigation