Skip to main content

Advertisement

Log in

Effects of antiepileptic drug therapy on vitamin D status and biochemical markers of bone turnover in children with epilepsy

  • Original Paper
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Reports of decreased serum 25-hydroxyvitamin D (25-OHD) and altered bone metabolism associated with antiepileptic drug (AED) treatment are inconsistent and predominantly restricted to adults. In this cross-sectional observational study, the aim was to evaluate the influence of AED treatment on vitamin D status and markers of bone turnover in children with epilepsy. In 38 children taking AEDs and 44 healthy control subjects, blood samples were collected to determine the levels of serum 25-OHD, intact parathyroid hormone (iPTH), calcium (Ca), phosphate (P), bone alkaline phosphatase (BAP), osteocalcin (OC) and C terminal telopeptide of type I collagen (ICTP). More than 75% of the patients were vitamin D deficient (serum 25-OHD<20 ng/mL) and 21% of the patients had an insufficient vitamin D status (serum 25-OHD=20–30 ng/mL). In the patients, the serum levels of OC (p = 0.002) and BAP (p < 0.001) were significantly increased, but ICTP (p = 0.002) concentrations were significantly decreased compared with the control group. When patients where divided into two groups according to their medication (mono- or polytherapy), significantly lower 25-OHD (p = 0.038) and ICTP (p = 0.005) levels and elevated BAP (p = 0.023) concentrations were found in patients under polytherapy. An association between 25-OHD and the measured bone markers could not be determined. Our results indicate that the prevalence of vitamin D deficiency in epilepsy patients under AED treatment is high, especially under polytherapy, and alteration markers of bone formation and resorption suggests an accelerated skeletal turnover. The routine monitoring of serum 25-OHD and vitamin D supplementation on an individual basis should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin R, Okutan V, Sarici U, Altunbas A, Gökçay E (1998) Evaluation of bone mineral density in children receiving antiepileptic drugs. Pediatr Neurol 19:129–131

    Article  PubMed  CAS  Google Scholar 

  2. Andersen R, Molgaard C, Skovgaard LT, Brot C, Cashman KD, Jakobsen J, Lamberg-Allardt C, Ovesen L (2007) Pakistani immigrant children and adults in Denmark have severely low vitamin D status. Eur J Clin Nutr [Epub ahead of print]

  3. Andress DL, Ozuna J, Tirschwell D, Grande L, Johnson M, Jacobson AF, Spain W (2002) Antiepileptic drug-induced bone loss in young male patients who have seizures. Arch Neurol 59:781–786

    Article  PubMed  Google Scholar 

  4. Attilakos A, Garoufi A, Voudris K, Mastroyianni S, Fotinou A, Papadimitriou DT, Gavalakis N, Prassouli A, Katsarou E (2007) Thyroid dysfunction associated with increased low-density lipoprotein cholesterol in epileptic children treated with carbamazepine monotherapy: a causal relationship? Eur J Paediatr Neurol 11:358–361

    Article  PubMed  Google Scholar 

  5. Attilakos A, Papakonstantinou E, Schulpis K, Voudris K, Katsarou E, Mastroyianni S, Garoufi A (2006) Early effect of sodium valproate and carbamazepine monotherapy on homocysteine metabolism in children with epilepsy. Epilepsy Res 71:229–232

    Article  PubMed  CAS  Google Scholar 

  6. Baer MT, Kozlowski BW, Blyler EM, Trahms CM, Taylor ML, Hogan MP (1997) Vitamin D, calcium, and bone status in children with developmental delay in relation to anticonvulsant use and ambulatory status. Am J Clin Nutr 65:1042–1051

    PubMed  CAS  Google Scholar 

  7. Bergqvist AG, Schall JI, Stallings VA (2007) Vitamin D status in children with intractable epilepsy, and impact of the ketogenic diet. Epilepsia 48:66–71

    Article  PubMed  CAS  Google Scholar 

  8. Bischoff-Ferrari HA (2007) The 25-hydroxyvitamin D threshold for better health. J Steroid Biochem Mol Biol 103:614–619

    Article  PubMed  CAS  Google Scholar 

  9. Bischoff-Ferrari HA, Giovannucci E, Willett WC, Dietrich T, Dawson-Hughes B (2006) Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr 84:18–28

    PubMed  CAS  Google Scholar 

  10. Bloomfield SA, Mysiw WJ, Jackson RD (1996) Bone mass and endocrine adaptations to training in spinal cord injured individuals. Bone 19:61–68

    Article  PubMed  CAS  Google Scholar 

  11. Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E (1998) Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res 13:1814–1821

    Article  PubMed  CAS  Google Scholar 

  12. Brown SJ (2006) The role of vitamin D in multiple sclerosis. Ann Pharmacother 40:1158–1161

    Article  PubMed  CAS  Google Scholar 

  13. Cheng S, Tylavsky F, Kröger H, Kärkkäinen M, Lyytikäinen A, Koistinen A, Mahonen A, Alen M, Halleen J, Väänänen K, Lamberg-Allardt C (2003) Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am J Clin Nutr 78:485–492

    PubMed  CAS  Google Scholar 

  14. Christiansen C, Rødbro P, Tjellesen L (1983) Pathophysiology behind anticonvulsant osteomalacia. Acta Neurol Scand Suppl 94:21–28

    PubMed  CAS  Google Scholar 

  15. Cowan LD (2002) The epidemiology of the epilepsies in children. Ment Retard Dev Disabil Res Rev 8:171–181

    Article  PubMed  Google Scholar 

  16. Davie MW, Emberson CE, Lawson DE, Roberts GE, Barnes JL, Barnes ND, Heeley AF (1983) Low plasma 25-hydroxyvitamin D and serum calcium levels in institutionalized epileptic subjects: associated risk factors, consequences and response to treatment with vitamin D. Q J Med 52:79–91

    PubMed  CAS  Google Scholar 

  17. Delmas PD (1995) Biochemical markers of the assessment of bone turnover. In: Riggs BL, Melton LJ (eds) Osteoporosis: etiology, diagnosis and management, 2nd edn. Lippincott-Raven, Philadelphia, pp 319–333

    Google Scholar 

  18. Dent CE, Richens A, Rowe DJF, Stamp TCB (1970) Osteomalacia with long-term anticonvulsant therapy in epilepsy. Br Med J 4:69–72

    PubMed  CAS  Google Scholar 

  19. Eiris J, Novo-Rodríguez MI, Del Río M, Meseguer P, Del Río MC, Castro-Gago M (2000) The effects on lipid and apolipoprotein serum levels of long-term carbamazepine, valproic acid and phenobarbital therapy in children with epilepsy. Epilepsy Res 41:1–7

    Article  PubMed  CAS  Google Scholar 

  20. Feldkamp J, Becker A, Witte OW, Scharff D, Scherbaum WA (2000) Long-term anticonvulsant therapy leads to low bone mineral density—evidence for direct drug effects of phenytoin and carbamazepine on human osteoblast-like cells. Exp Clin Endocrinol Diabetes 108:37–43

    PubMed  CAS  Google Scholar 

  21. Fitzpatrick LA (2004) Pathophysiology of bone loss in patients receiving anticonvulsant therapy. Epilepsy Behav 5(Suppl 2):S3–S15

    Article  PubMed  Google Scholar 

  22. Ginty F, Cavadini C, Michaud PA, Burckhardt P, Baumgartner M, Mishra GD, Barclay DV (2004) Effects of usual nutrient intake and vitamin D status on markers of bone turnover in Swiss adolescents. Eur J Clin Nutr 58:1257–1265

    Article  PubMed  CAS  Google Scholar 

  23. Gissel T, Poulsen CS, Vestergaard P (2007) Adverse effects of antiepileptic drugs on bone mineral density in children. Expert Opin Drug Saf 6:267–278

    Article  PubMed  CAS  Google Scholar 

  24. Gosling P (1986) Analytical reviews in clinical biochemistry: calcium measurement. Ann Clin Biochem 23:146–156

    PubMed  CAS  Google Scholar 

  25. Gough H, Goggin T, Bissessar A, Baker M, Crowley M, Callaghan N (1986) A comparative study of the relative influence of different anticonvulsant drugs, UV exposure and diet on vitamin D and calcium metabolism in out-patients with epilepsy. Q J Med 59:569–577

    PubMed  CAS  Google Scholar 

  26. Grant WB, Holick MF (2005) Benefits and requirements of vitamin D for optimal health: a review. Altern Med Rev 10:94–111

    PubMed  Google Scholar 

  27. Guo CY, Ronen GM, Atkinson SA (2001) Long-term valproate and lamotrigine treatment may be a marker for reduced growth and bone mass in children with epilepsy. Epilepsia 42:1141–1147

    Article  PubMed  CAS  Google Scholar 

  28. Hahn TJ, Hendin BA, Scharp CR, Boisseau VC, Haddad JG (1975) Serum 25-hydroxycalciferol levels and bone mass in children on chronic anticonvulsant therapy. N Engl J Med 292:550–554

    Article  CAS  Google Scholar 

  29. Harms HM, Schlinke E, Neubauer O, Kayser C, Wüstermann PR, Horn R, Külpmann WR, von zur Mühlen A, Hesch RD (1994) Pulse amplitude and frequency modulation of parathyroid hormone in primary hyperparathyroidism. J Clin Endocrinol Metab 78:53–57

    Article  PubMed  CAS  Google Scholar 

  30. Hintzpeter B, Mensink GB, Thierfelder W, Müller MJ, Scheidt-Nave C (2007) Vitamin D status and health correlates among German adults. Eur J Clin Nutr [Epub ahead of print]

  31. Hoikka V, Savolainen K, Alhava EM, Sivenius J, Karjalainen P, Repo A (1981) Osteomalacia in institutionalized epileptic patients on long-term anticonvulsant therapy. Acta Neurol Scand 64:122–131

    Article  PubMed  CAS  Google Scholar 

  32. Holick MF (1994) McCollum award lecture, 1994: Vitamin D—new horizons for the 21st century. Am J Clin Nutr 60:619–630

    PubMed  CAS  Google Scholar 

  33. Holick MF (2006) The role of vitamin D for bone health and fracture prevention. Curr Osteoporos Rep 4:96–102

    Article  PubMed  Google Scholar 

  34. Hunter J, Maxwell JD, Stewart DA, Parsons V, Williams R (1971) Altered calcium metabolism in epileptic children on anticonvulsants. Br Med J 23:202–204

    Google Scholar 

  35. Kafali G, Erselcan T, Tanzer F (1999) Effect of antiepileptic drugs on bone mineral density in children between ages 6 and 12 years. Clin Pediatr (Phila) 38:93–98

    Article  CAS  Google Scholar 

  36. Kalueff AV, Minasyan A, Tuohimaa P (2005) Anticonvulsant effects of 1,25-dihydroxyvitamin D in chemically induced seizures in mice. Brain Res Bull 67:156–160

    Article  PubMed  CAS  Google Scholar 

  37. Karabiber H, Sonmezgoz E, Ozerol E, Yakinci C, Otlu B, Yologlu S (2003) Effects of valproate and carbamazepine on serum levels of homocysteine, vitamin B12, and folic acid. Brain Dev 25:113–115

    Article  PubMed  Google Scholar 

  38. Kaushik A, Sehgal H, Kumar R (1982) Altered vitamin-D metabolism due to anticonvulsant drugs in epileptic children. Indian Pediatr 19:489–492

    PubMed  CAS  Google Scholar 

  39. Krause KH, Berlit P, Bonjour JP, Schmidt-Gayk H, Schellenberg B, Gillen J (1982) Vitamin status in patients on chronic anticonvulsant therapy. Int J Vitam Nutr Res 52:375–385

    PubMed  CAS  Google Scholar 

  40. Krause KH, Bonjour JP, Berlit P, Kynast G, Schmidt-Gayk H, Arab L (1986) B vitamins in epileptics. Bibl Nutr Dieta 38:154–167

    PubMed  Google Scholar 

  41. Krause KH, Bonjour JP, Berlit P, Kynast G, Schmidt-Gayk H, Schellenberg B (1988) Effect of long-term treatment with antiepileptic drugs on the vitamin status. Drug Nutr Interact 5:317–343

    PubMed  CAS  Google Scholar 

  42. Kruse K, Kracht U, Göpfert G (1982) Response of kidney and bone to parathyroid hormone in children receiving anticonvulsant drugs. Neuropediatrics 13:3–9

    Article  PubMed  CAS  Google Scholar 

  43. Kulak CA, Borba VZ, Bilezikian JP, Silvado CE, Paola L, Boguszewski CL (2004) Bone mineral density and serum levels of 25 OH vitamin D in chronic users of antiepileptic drugs. Arq Neuropsiquiatr 62:940–948

    PubMed  Google Scholar 

  44. Lehtonen-Veromaa MK, Möttönen TT, Nuotio IO, Irjala KM, Leino AE, Viikari JS (2002) Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-y prospective study. Am J Clin Nutr 76:1446–1453

    PubMed  CAS  Google Scholar 

  45. Mark BL, Carson JA (2006) Vitamin D and autoimmune disease—implications for practice from the multiple sclerosis literature. J Am Diet Assoc 106:418–424

    Article  PubMed  CAS  Google Scholar 

  46. Mintzer S, Boppana P, Toguri J, DeSantis A (2006) Vitamin D levels and bone turnover in epilepsy patients taking carbamazepine or oxcarbazepine. Epilepsia 47:510–515

    Article  PubMed  CAS  Google Scholar 

  47. Morijiri Y, Sato T (1981) Factors causing rickets in institutionalised handicapped children on anticonvulsant therapy. Arch Dis Child 56:446–449

    PubMed  CAS  Google Scholar 

  48. Nakamura K, Nashimoto M, Matsuyama S, Yamamoto M (2001) Low serum concentrations of 25-hydroxyvitamin D in young adult Japanese women: a cross sectional study. Nutrition 17:921–925

    Article  PubMed  CAS  Google Scholar 

  49. Nakamura K, Ueno K, Nishiwaki T, Okuda Y, Saito T, Tsuchiya Y, Yamamoto M (2005) Nutrition, mild hyperparathyroidism, and bone mineral density in young Japanese women. Am J Clin Nutr 82:1127–1133

    PubMed  CAS  Google Scholar 

  50. Nicolaidou P, Georgouli H, Kotsalis H, Matsinos Y, Papadopoulou A, Fretzayas A, Syriopoulou V, Krikos X, Karantana A, Karpathios T (2006) Effects of anticonvulsant therapy on vitamin D status in children: prospective monitoring study. J Child Neurol 21:205–209

    PubMed  Google Scholar 

  51. Nordström P, Lorentzon R (1999) Influence of heredity and environment on bone density in adolescent boys: a parent-offspring study. Osteoporos Int 10:271–277

    Article  PubMed  Google Scholar 

  52. Öner N, Kaya M, Karasalihoğlu S, Karaca H, Celtik C, Tütüncüler F (2004) Bone mineral metabolism changes in epileptic children receiving valproic acid. J Paediatr Child Health 40:470–473

    Article  PubMed  Google Scholar 

  53. Outila TA, Kärkkäinen MU, Lamberg-Allardt CJ (2001) Vitamin D status affects serum parathyroid hormone concentrations during winter in female adolescents: associations with forearm bone mineral density. Am J Clin Nutr 74:206–210

    PubMed  CAS  Google Scholar 

  54. Pascussi JM, Robert A, Nguyen M, Walrant-Debray O, Garabedian M, Martin P, Pineau T, Saric J, Navarro F, Maurel P, Vilarem MJ (2005) Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J Clin Invest 115:177–186

    PubMed  CAS  Google Scholar 

  55. Petty SJ, O’Brien TJ, Wark JD (2007) Anti-epileptic medication and bone health. Osteoporos Int 18:129–142

    Article  PubMed  CAS  Google Scholar 

  56. Ponsonby AL, Lucas RM, van der Mei IA (2005) UVR, vitamin D and three autoimmune diseases—multiple sclerosis, type 1 diabetes, rheumatoid arthritis. Photochem Photobiol 81:1267–1275

    Article  PubMed  CAS  Google Scholar 

  57. Rieger-Wettengl G, Tutlewski B, Stabrey A, Rauch F, Herkenrath P, Schauseil-Zipf U, Schoenau E (2001) Analysis of the musculoskeletal system in children and adolescents receiving anticonvulsant monotherapy with valproic acid or carbamazepine. Pediatrics 108:E107

    Article  PubMed  CAS  Google Scholar 

  58. Sato Y, Kondo I, Ishida S, Motooka H, Takayama K, Tomita Y, Maeda H, Satoh K (2001) Decreased bone mass and increased bone turnover with valproate therapy in adults with epilepsy. Neurology 14(57):445–449

    Google Scholar 

  59. Sheth RD, Wesolowski CA, Jacob JC, Penney S, Hobbs GR, Riggs JE, Bodensteiner JB (1995) Effect of carbamazepine and valproate on bone mineral density. J Pediatr 127:256–262

    Article  PubMed  CAS  Google Scholar 

  60. Shinnar S, Pellock JM (2002) Update on the epidemiology and prognosis of pediatric epilepsy. J Child Neurol 17(Suppl 1):S4–S17

    Article  PubMed  Google Scholar 

  61. Sonmez FM, Demir E, Orem A, Yildirmis S, Orhan F, Aslan A, Topbas M (2006) Effect of antiepileptic drugs on plasma lipids, lipoprotein (a), and liver enzymes. J Child Neurol 21:70–74

    Article  PubMed  Google Scholar 

  62. Sözüer DT, Atakil D, Dogu O, Baybas S, Arpaci B (1997) Serum lipids in epileptic children treated with carbamazepine and valproate. Eur J Pediatr 156:565–567

    Article  PubMed  Google Scholar 

  63. Tsai KS, Lin JC, Chen CK, Cheng WC, Yang CH (1997) Effect of exercise and exogenous glucocorticoid on serum level of intact parathyroid hormone. Int J Sports Med 18:583–587

    Article  PubMed  CAS  Google Scholar 

  64. Välimäki MJ, Tiihonen M, Laitinen K, Tähtelä R, Kärkkäinen M, Lamberg-Allardt C, Mäkelä P, Tunninen R (1994) Bone mineral density measured by dual-energy x-ray absorptiometry and novel markers of bone formation and resorption in patients on antiepileptic drugs. J Bone Miner Res 9:631–637

    Article  PubMed  Google Scholar 

  65. Valsamis HA, Arora SK, Labban B, McFarlane SI (2006) Antiepileptic drugs and bone metabolism. Nutr Metab (Lond) 6:36

    Article  CAS  Google Scholar 

  66. Vernillo AT, Rifkin BR, Hauschka PV (1990) Phenytoin affects osteocalcin secretion from osteoblastic rat osteosarcoma 17/2.8 cells in culture. Bone 11:309–312

    Article  PubMed  CAS  Google Scholar 

  67. Verrotti A, Greco R, Latini G, Morgese G, Chiarelli F (2002) Increased bone turnover in prepubertal, pubertal, and postpubertal patients receiving carbamazepine. Epilepsia 43:1488–1492

    Article  PubMed  CAS  Google Scholar 

  68. Verrotti A, Greco R, Morgese G, Chiarelli F (2000) Increased bone turnover in epileptic patients treated with carbamazepine. Ann Neurol 47:385–388

    Article  PubMed  CAS  Google Scholar 

  69. Vieth R (2004) Why the optimal requirement for Vitamin D3 is probably much higher than what is officially recommended for adults. J Steroid Biochem Mol Biol 89–90:575–579

    Article  PubMed  CAS  Google Scholar 

  70. Vieth R (2006) What is the optimal vitamin D status for health? Prog Biophys Mol Biol 92:26–32

    Article  PubMed  CAS  Google Scholar 

  71. Vieth R, Chan PC, MacFarlane GD (2001) Efficacy and safety of vitamin D3 intake exceeding the lowest observed adverse effect level. Am J Clin Nutr 73:288–294

    PubMed  CAS  Google Scholar 

  72. Voudris KA, Attilakos A, Katsarou E, Drakatos A, Dimou S, Mastroyianni S, Skardoutsou A, Prassouli A, Garoufi A (2006) Early and persistent increase in serum lipoprotein (a) concentrations in epileptic children treated with carbamazepine and sodium valproate monotherapy. Epilepsy Res 70:211–217

    Article  PubMed  CAS  Google Scholar 

  73. Voudris K, Moustaki M, Zeis PM, Dimou S, Vagiakou E, Tsagris B, Skardoutsou A (2002) Alkaline phosphatase and its isoenzyme activity for the evaluation of bone metabolism in children receiving anticonvulsant monotherapy. Seizure 11:377–380

    Article  PubMed  Google Scholar 

  74. Weisman SM, Matkovic V (2005) Potential use of biochemical markers of bone turnover for assessing the effect of calcium supplementation and predicting fracture risk. Clin Ther 27:299–308

    Article  PubMed  CAS  Google Scholar 

  75. Winnacker JL, Yeager H, Saunders JA, Russell B, Anast CS (1977) Rickets in children receiving anticonvulsant drugs. Biochemical and hormonal markers. Am J Dis Child 131:286–290

    PubMed  CAS  Google Scholar 

  76. Zhou C, Assem M, Tay JC, Watkins PB, Blumberg B, Schuetz EG, Thummel KE (2006) Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia. J Clin Invest 116:1703–1712

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Karl Bröcker Stiftung (Geseke, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Nettekoven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nettekoven, S., Ströhle, A., Trunz, B. et al. Effects of antiepileptic drug therapy on vitamin D status and biochemical markers of bone turnover in children with epilepsy. Eur J Pediatr 167, 1369–1377 (2008). https://doi.org/10.1007/s00431-008-0672-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-008-0672-7

Keywords

Navigation