Skip to main content
Log in

Recent advances in vitamin E metabolism and deficiency

  • Review
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Alpha-, beta-, gamma- and delta-tocopherol are present in many foods and are, in the absence of fat malabsorption, well absorbed from the gut. Their anti-oxidant property is well known and protects arteries and capillaries as well as blood lipids and nervous tissue against oxidative stress. In contrast to beta-, gamma- and delta-tocopherol, alpha-tocopherol is preferentially conserved by the discriminating action of the liver alpha-tocopherol transfer protein, which also maintains plasma alpha-tocopherol concentration within a range of 20 to 40 μM. In the circulation, alpha-tocopherol, in association with the transfer-protein, is assembled into the very low-density lipoprotein and low-density liprotein particles and released for use by the peripheral tissues. Recent data suggest that alpha-tocopherol is not only an anti-oxidant but also a regulator of gene expression through its binding to nuclear receptors. The precise mechanism of regulating gene expression, however, is still unknown. The four tocopherols are ultimately degraded by omega-oxidation and subsequent beta-oxidations followed by the elimination of the metabolites in the bile and in the urine. Patients with a defect of the alpha-tocopherol transfer protein are unable to maintain their alpha-tocopherol reserves and progressively lose tendon reflexes and have signs and symptoms of spinocerebellar ataxia while plasma vitamin E level drops below 2 μg/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Alpha-T or alpha-tocopherol:

2R, 4′R, 8′R Alpha-tocopherol

Alpha-TBP:

Alpha-Tocopherol binding protein

Alpha-TTP:

Alpha-Tocopherol transfer protein

AVED:

Ataxia with vitamin E deficiency

CM:

Chylomicron

FFA:

Free fatty acids

MTP:

Microsomal triglyceride transfer protein

VLDL:

Very low-density lipoprotein

References

  1. Aicardi J (1992) Diseases of the nervous system in childhood. MacKeith Press, London

  2. Aparicio JM, Bélanger-Quintana A, Suárez L, Mayo D, Benitez J, Diaz M, Escobar H (2001) Ataxia with isolated vitamin E deficiency: case report and review of the literature. J Pediatr Gastroenterol Nutr 33:206–210

    Article  PubMed  CAS  Google Scholar 

  3. Arita M, Sato Y, Miayata A, Tanabe T, Takahashi E, Kayden J, Arai H, Inoue K (1998) Human alpha-tocopherol transfer protein: cDNA cloning, expression and chromosomal localisation. Biochem J 306:437–443

    Google Scholar 

  4. Bieri JG (1987) Dietary role of vitamin E. In: Horisberger M, Bracco U (eds) Lipids in modern nutrition. Raven Press, New York, pp 123–131

    Google Scholar 

  5. Borel P, Pasquier B, Armand M, Tyssandier V, Grolier P, Alexandre-Gouabau M-C, André M, Senft M, Peyrot J, Jaussan V, Lairon D, Azais-Braesco V (2001) Processing of vitamin A and E in the human gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 280:G95–G103

    PubMed  CAS  Google Scholar 

  6. Catignani GL, Bieri JG (1977) Rat liver alpha-tocopherol binding protein. Biochim Biophys Acta 497:349–357

    PubMed  CAS  Google Scholar 

  7. Cavalier L, Ouahchi K, Kayden HJ, Di Donato S, Reutenauer L, Mandel J-L, Koenig M (1998) Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet 62:301–310

    Article  PubMed  CAS  Google Scholar 

  8. Chang C-J, Hsieh R-H, Wang H-F, Chin M-Y, Huang S-Y (2005) Effects of glucose and of alpha-tocopherol on low-density lipoprotein oxidation and glycation. Ann N Y Acad Sci 1042:294–302

    Article  PubMed  CAS  Google Scholar 

  9. Chow CK (2000) Vitamin E. In: Stipanuk MH (ed) Biochemical and physiological aspects of human nutrition. Saunders, Philadelphia, pp 584–598

    Google Scholar 

  10. Evans HM, Bishop KS (1922) On the existence of hitherto unrecognized dietary factor essential for reproduction. Science 56:650–651

    Article  PubMed  CAS  Google Scholar 

  11. Feranehak AP, Sontag MK, Wagener JS, Hammond KB, Accurso FJ, Sokol RJ (1999) Prospective, long-term study of fat-soluble vitamin status in children with cystic fibrosis identified by newborn screen. J Pediatr 135:601–610

    Article  PubMed  Google Scholar 

  12. Garrow JS, James WPT, Ralph A (2000) Human nutrition and dietetics, 10th edn. Churchill Livingstone, London

  13. Hacquebard M, Carpentier YA (2005) Vitamin E: absorption, plasma transport and cell uptake. Curr Opin Nutr Metab Care 8:133–138

    Article  CAS  Google Scholar 

  14. Hardikar W, Suchy FJ (2003) Hepatobiliary function. In: Boron WF, Boulpaepe E (eds) Medical physiology. Saunders, Philadelphia, pp 998–1002

    Google Scholar 

  15. Koscic RL, Lai HJ, Laxova A, Zaremba KM, Kosorok MR, Douglas JA, Rock MJ, Splaingard ML, Farrell PM (2005) Preventing early, prolonged vitamin E deficiency: an opportunity for better cognitive outcomes via early diagnosis through neonatal screening. J Pediatr 147:S51–S56

    Article  PubMed  Google Scholar 

  16. Lammert F, Wang DQ-H (2005) New insights into the genetic regulation of intestinal cholesterol absorption. Gastroenterology 129:718–734

    Article  PubMed  Google Scholar 

  17. Laposata M (1992) SI UNIT conversion guide. NEJM Books, Boston

    Google Scholar 

  18. Martin MG, Wright EM (2004) Congenital intestinal transport defects. In: Walker WA, Goulet O, Kleinman RE, Sherman PM, Shneider BL, Sanderson IR (eds) Pediatric Gastrointestinal disease, 4th edn. Decker, Lewiston, N.Y., pp 898–921

    Google Scholar 

  19. Meydani M (1995) Vitamin E. Lancet 345:170–175

    Article  PubMed  CAS  Google Scholar 

  20. Pulai JI, Neuman RJ, Groenewegen AW, Wu J, Schonfeld G (1998) Genetic heterogeneity in familial hypobetalipoproteinemia: linkage and non-linkage to the apoB gene in Caucasian families. Am J Med Genet 76:79–86

    Article  PubMed  CAS  Google Scholar 

  21. Rader DJ, Brewer HB (1993) Abetalipoproteinemia, new insights into lipoprotein assembly and vitamin E metabolism from a rare genetic disease. JAMA 270:865–869

    Article  PubMed  CAS  Google Scholar 

  22. Schonfeld G (1995) The Hypobetalipoproteinemias. Ann Rev Nutr 15:23–24

    Article  CAS  Google Scholar 

  23. Souci SW, Fachmann W, Kraut H (2000) Food and nutrition tables. Medpharm Scientific Publ, Stuttgart

    Google Scholar 

  24. Traber MG (2005) Vitamin E regulation. Curr Opin Gastroenterol 21:223–227

    Article  PubMed  CAS  Google Scholar 

  25. Traber MG, Arai H (1999) Molecular mechanisms of vitamin E transport. Annu Rev Nutr 19:343–355

    Article  PubMed  CAS  Google Scholar 

  26. Traber MG, Sokol RJ, Kohlschütter A, Yokota T, Muller DPR, Dufour R, Kayden HJ (1993) Impaired discrimination between stereoisomers of alpha-tocopherol in patients with familial isolated vitamin E deficiency. J Lipid Res 34:201–210

    PubMed  CAS  Google Scholar 

  27. Waterham HR (2002) Inherited disorders of cholesterol biosynthesis. Clin Genet 61:393–403

    Article  PubMed  CAS  Google Scholar 

  28. Wettereau JR, Aggerbeck LP, Bouma ME, Eisenberg C, Munck A, Hermier M, Schmitz J, Gay G, Rader DJ, Gregg RE (1992) Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 258:999–1001

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ephrem Eggermont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eggermont, E. Recent advances in vitamin E metabolism and deficiency. Eur J Pediatr 165, 429–434 (2006). https://doi.org/10.1007/s00431-006-0084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-006-0084-5

Keywords

Navigation