Skip to main content

Advertisement

Log in

Stepwise adaptation of murine cytomegalovirus to cells of a foreign host for identification of host range determinants

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Ever since their first isolation 60 years ago, cytomegaloviruses have been recognized as being highly species specific. They replicate only in cells of their own or a closely related host species, while cells of phylogenetically more distant hosts are usually not permissive for viral replication. For instance, human cytomegalovirus replicates in human and chimpanzee fibroblasts but not in rodent cells, and murine cytomegalovirus (MCMV) replicates in cells of mice and rats but not in primate cells. However, the viral and cellular factors determining the narrow host range of cytomegaloviruses have remained largely unknown. We show that MCMV can be adapted stepwise to replicate in cultured human retinal pigment epithelial (RPE-1) cells and human fibroblasts. The human RPE-1 cells used for the initial adaptation step showed a pronounced contact inhibition and produced very low level of interferon-β transcripts upon cytomegalovirus infection, suggesting that these cells provide a particularly favorable environment for adaptation. By whole genome sequencing of the 230 kbp viral genomes of several adapted mutants, a limited number of mutations were detected. Comparison of several human cell-adapted MCMV clones and introduction of specific mutations into the wild-type MCMV genome by site-directed mutagenesis allows for the identification of viral host range determinants and provides the basis for elucidating the molecular basis of the cytomegalovirus host species specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smith MG (1954) Propagation of salivary gland virus of the mouse in tissue cultures. Proc Soc Exp Biol Med 86(3):435–440

    Article  CAS  PubMed  Google Scholar 

  2. Smith MG (1956) Propagation in tissue cultures of a cytopathogenic virus from human salivary gland virus (SGV) disease. Proc Soc Exp Biol Med 92:424–430

    Article  CAS  PubMed  Google Scholar 

  3. Rowe WP, Hartley JW, Waterman S et al (1956) Cytopathogenic agent resembling salivary gland virus recovered from tissue cultures of human adenoids. Proc Soc Exp Biol Med 92:418–424

    Article  CAS  PubMed  Google Scholar 

  4. Weller TH, Macauley JC, Craig JM, Wirth P (1957) Isolation of intranuclear inclusion producing agents from infants with illnesses resembling cytomegalic inclusion disease. Proc Soc Exp Biol Med 94:4–12

    Article  PubMed  Google Scholar 

  5. Weller TH (1970) Cytomegaloviruses: the difficult years. J Infect Dis 122(6):532–539

    Article  CAS  PubMed  Google Scholar 

  6. Brune W (2013) Molecular basis of cytomegalovirus host species specificity. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol 1. Caister Academic Press, Norfolk, pp 322–329

    Google Scholar 

  7. Swinkels BW, Geelen JL, Wertheim-van Dillen P, van Es AA, van der Noordaa J (1984) Initial characterization of four cytomegalovirus strains isolated from chimpanzees. Brief Rep Arch Virol 82(1–2):125–128

    Article  CAS  Google Scholar 

  8. Davison AJ, Dolan A, Akter P, Addison C, Dargan DJ, Alcendor DJ, McGeoch DJ, Hayward GS (2003) The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84(Pt 1):17–28

    Article  CAS  PubMed  Google Scholar 

  9. Perot K, Walker CM, Spaete RR (1992) Primary chimpanzee skin fibroblast cells are fully permissive for human cytomegalovirus replication. J Gen Virol 73(Pt 12):3281–3284

    Article  PubMed  Google Scholar 

  10. Reed JM, Schiff LJ, Shefner AM, Poiley SM (1975) Murine virus susceptibility of cell cultures of mouse, rat, hamster, monkey, and human origin. Lab Anim Sci 25(4):420–424

    CAS  PubMed  Google Scholar 

  11. Bruggeman CA, Meijer H, Dormans PH, Debie WM, Grauls GE, van Boven CP (1982) Isolation of a cytomegalovirus-like agent from wild rats. Arch Virol 73(3–4):231–241

    Article  CAS  PubMed  Google Scholar 

  12. Walker D, Hudson J (1987) Analysis of immediate-early and early proteins of murine cytomegalovirus in permissive and nonpermissive cells. Arch Virol 92(1–2):103–119

    Article  CAS  PubMed  Google Scholar 

  13. Walker DG, Hudson JB (1988) Further characterization of the murine cytomegalovirus induced early proteins in permissive and nonpermissive cells. Arch Virol 101(3–4):143–154

    Article  CAS  PubMed  Google Scholar 

  14. Lafemina RL, Hayward GS (1988) Differences in cell-type-specific blocks to immediate early gene expression and DNA replication of human, simian and murine cytomegalovirus. J Gen Virol 69(2):355–374

    Article  CAS  PubMed  Google Scholar 

  15. Kim KS, Carp RI (1972) Abortive infection of human diploid cells by murine cytomegalovirus. Infect Immun 6(5):793–797

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Mocarski ES, Courcelle CT (2001) Cytomegaloviruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 4th edn. Lippincott-Williams and Wilkins, Philadelphia, pp 2629–2673

    Google Scholar 

  17. Jurak I, Brune W (2006) Induction of apoptosis limits cytomegalovirus cross-species infection. EMBO J 25(11):2634–2642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Parisien JP, Lau JF, Horvath CM (2002) STAT2 acts as a host range determinant for species-specific paramyxovirus interferon antagonism and simian virus 5 replication. J Virol 76(13):6435–6441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wang F, Ma Y, Barrett JW, Gao X, Loh J, Barton E, Virgin HW, McFadden G (2004) Disruption of Erk-dependent type I interferon induction breaks the myxoma virus species barrier. Nat Immunol 5(12):1266–1274

    Article  CAS  PubMed  Google Scholar 

  20. Rieger T, Merkler D, Gunther S (2013) Infection of type I interferon receptor-deficient mice with various old world arenaviruses: a model for studying virulence and host species barriers. PLoS One 8(8):e72290. doi:10.1371/journal.pone.0072290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ida-Hosonuma M, Iwasaki T, Yoshikawa T, Nagata N, Sato Y, Sata T, Yoneyama M, Fujita T, Taya C, Yonekawa H, Koike S (2005) The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J Virol 79(7):4460–4469. doi:10.1128/JVI.79.7.4460-4469.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Dhondt KP, Mathieu C, Chalons M, Reynaud JM, Vallve A, Raoul H, Horvat B (2013) Type I interferon signaling protects mice from lethal henipavirus infection. J Infect Dis 207(1):142–151. doi:10.1093/infdis/jis653

    Article  CAS  PubMed  Google Scholar 

  23. Lever MS, Piercy TJ, Steward JA, Eastaugh L, Smither SJ, Taylor C, Salguero FJ, Phillpotts RJ (2012) Lethality and pathogenesis of airborne infection with filoviruses in A129 alpha/beta -/- interferon receptor-deficient mice. J Med Microbiol 61(Pt 1):8–15. doi:10.1099/jmm.0.036210-0

    Article  CAS  PubMed  Google Scholar 

  24. Kamal RP, Katz JM, York IA (2014) Molecular determinants of influenza virus pathogenesis in mice. Curr Top Microbiol Immunol 385:243–274. doi:10.1007/82_2014_388

    PubMed  Google Scholar 

  25. Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R (2010) Viral mutation rates. J Virol 84(19):9733–9748. doi:10.1128/JVI.00694-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Raynaud J, Atanasiu P, Barreau C, Jahkola M (1969) Adaptation d’un virus cytomégalique provenant du Mulot (Apodemus sylvaticus) sur différentes cellules hétérologues, y compris les cellules humaines. C R Acad Sci Hebd Seances Acad Sci D 269(1):104–106

    CAS  PubMed  Google Scholar 

  27. Kim KS, Sapienza V, Carp RI (1974) Comparative studies of the Smith and Raynaud strains of murine cytomegalovirus. Infect Immun 10(3):672–674

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Schumacher U, Handke W, Jurak I, Brune W (2010) Mutations in the M112/M113-coding region facilitate murine cytomegalovirus replication in human cells. J Virol 84(16):7994–8006. doi:10.1128/JVI.02624-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352

    Article  CAS  PubMed  Google Scholar 

  30. Harvey DM, Levine AJ (1991) p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. Genes Dev 5(12B):2375–2385

    Article  CAS  PubMed  Google Scholar 

  31. Wagner M, Jonjic S, Koszinowski UH, Messerle M (1999) Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J Virol 73(8):7056–7060

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Angulo A, Ghazal P, Messerle M (2000) The major immediate-early gene ie3 of mouse cytomegalovirus is essential for viral growth. J Virol 74(23):11129–11136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Ebert O, Shinozaki K, Huang TG, Savontaus MJ, Garcia-Sastre A, Woo SL (2003) Oncolytic vesicular stomatitis virus for treatment of orthotopic hepatocellular carcinoma in immune-competent rats. Cancer Res 63(13):3605–3611

    CAS  PubMed  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  35. Havell EA, Hayes TG, Vilcek J (1978) Synthesis of two distinct interferons by human fibroblasts. Virology 89(1):330–334

    Article  CAS  PubMed  Google Scholar 

  36. Hooks JJ, Nagineni CN, Hooper LC, Hayashi K, Detrick B (2008) IFN-beta provides immuno-protection in the retina by inhibiting ICAM-1 and CXCL9 in retinal pigment epithelial cells. J Immunol 180(6):3789–3796

    Article  CAS  PubMed  Google Scholar 

  37. Kumar MV, Nagineni CN, Chin MS, Hooks JJ, Detrick B (2004) Innate immunity in the retina: toll-like receptor (TLR) signaling in human retinal pigment epithelial cells. J Neuroimmunol 153(1–2):7–15. doi:10.1016/j.jneuroim.2004.04.018

    Article  CAS  PubMed  Google Scholar 

  38. Ebihara N, Chen L, Tokura T, Ushio H, Iwatsu M, Murakami A (2007) Distinct functions between toll-like receptors 3 and 9 in retinal pigment epithelial cells. Ophthalmic Res 39(3):155–163. doi:10.1159/000103235

    Article  CAS  PubMed  Google Scholar 

  39. McSharry BP, Forbes SK, Avdic S, Randall RE, Wilkinson GW, Abendroth A, Slobedman B (2015) Abrogation of the interferon response promotes more efficient human cytomegalovirus replication. J Virol 89(2):1479–1483. doi:10.1128/JVI.02988-14

    Article  CAS  PubMed  Google Scholar 

  40. Zimmermann A, Trilling M, Wagner M, Wilborn M, Bubic I, Jonjic S, Koszinowski U, Hengel H (2005) A cytomegaloviral protein reveals a dual role for STAT2 in IFN-gamma signaling and antiviral responses. J Exp Med 201(10):1543–1553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Budt M, Hristozova T, Hille G, Berger K, Brune W (2011) Construction of a lytically replicating Kaposi’s sarcoma-associated herpesvirus. J Virol 85(19):10415–10420. doi:10.1128/JVI.05071-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Emeny JM, Morgan MJ (1979) Regulation of the interferon system: evidence that Vero cells have a genetic defect in interferon production. J Gen Virol 43(1):247–252

    Article  CAS  PubMed  Google Scholar 

  43. Young DF, Andrejeva L, Livingstone A, Goodbourn S, Lamb RA, Collins PL, Elliott RM, Randall RE (2003) Virus replication in engineered human cells that do not respond to interferons. J Virol 77(3):2174–2181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Sumpter R Jr, Loo YM, Foy E, Li K, Yoneyama M, Fujita T, Lemon SM, Gale M Jr (2005) Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79(5):2689–2699. doi:10.1128/JVI.79.5.2689-2699.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ruzsics Z, Borst EM, Bosse JB, Brune W, Messerle M (2013) Manipulating CMV Genomes by BAC Mutagenesis: Strategies and Applications. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol 1. Caister Academic Press, Norwich, pp 38–58

    Google Scholar 

  46. Schumacher U (2010) Molekulare Grundlagen der Spezies-Spezifität bei Zytomegalieviren. Dissertation, Freie Universität Berlin

  47. Rawlinson WD, Farrell HE, Barrell BG (1996) Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70(12):8833–8849

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Malik Alawi for help with sequence alignments and Theodore Potgieter for a critical reading of the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (BR 1730/4-1 to W.B.). The Heinrich Pette Institute is supported by the Free and Hanseatic City of Hamburg and the Federal Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Brune.

Additional information

This article is part of the Special Issue on Cytomegalovirus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostermann, E., Pawletko, K., Indenbirken, D. et al. Stepwise adaptation of murine cytomegalovirus to cells of a foreign host for identification of host range determinants. Med Microbiol Immunol 204, 461–469 (2015). https://doi.org/10.1007/s00430-015-0400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-015-0400-7

Keywords

Navigation