Skip to main content

Advertisement

Log in

The lack of Pneumococcal surface protein C (PspC) increases the susceptibility of Streptococcus pneumoniae to the killing by microglia

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Microglial cells, the resident phagocytes in the brain, share many phenotypical and functional characteristics with peripheral macrophages, suggesting that they may participate in an innate immune response against microorganisms invading the central nervous system (CNS). In this study, we demonstrate that the microglial cells constitutively exhibit antibacterial activity in vitro against Streptococcus pneumoniae. By using a Pneumococcal surface protein C (PspC)-deleted strain and its wild-type counterpart, we found that the extent of such an activity is significantly influenced by the presence of a PspC molecule on the bacterial surface. The PspC− mutant FP20 is indeed more susceptible than the PspC+ strain HB565 to microglial killing. Interestingly, this phenomenon is observed when using a medium supplemented with heat-inactivated foetal bovine serum (FBS). Electron microscopy studies indicate that the microglial cells interact more efficiently with PspC− than with PspC+ pneumococci. Moreover, upon infection with the PspC− mutant, microglial cells produce levels of TNF-α, MIP-2, IL-10 and nitric oxide, significantly higher than those observed with PspC+ bacteria. These findings indicate that the lack of PspC significantly enhances the susceptibility of S. pneumoniae to both bactericidal activity and secretory response by the microglial cells, suggesting that this molecule may play an important role in the invasion of CNS by pneumococcus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balachandran P, Brooks-Walter A, Virolainen-Julkunen A, Hollingshead SK, Briles DE (2002) Role of Pneumococcal surface protein C in nasopharingeal carriage and pneumonia and its ability to elicit protection against carriage of Streptococcus pneumoniae. Infect Immun 70:2526–2534

    Article  CAS  PubMed  Google Scholar 

  2. Blackmore TK, Fischetti VA, Sadlon TA, Ward HM, Gordon DL (1998) M protein of the group A Streptococcus binds to the seventh short consensus repeat of human complement factor H. Infect Immun 66:1427–1431

    CAS  PubMed  Google Scholar 

  3. Barluzzi R, Brozzetti A, Mariucci G, Tantucci M, Neglia R, Bistoni F, Blasi E (2000) Establishment of protective immunity against cerebral cryptococcosis by means of a avirulent, non melanogenic Cryptococcus neoformans strain. J Neuroimmunol 109:75–86

    Article  CAS  PubMed  Google Scholar 

  4. Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F (1999) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27:229–237

    Article  Google Scholar 

  5. Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-gamma. Annu Rev Immunol 15:749–795

    Article  CAS  PubMed  Google Scholar 

  6. Braun JS, Novak R, Murray PJ, Eischen CM, Susin SA, Kroemer G, Halle A, Weber JR, Tuomanen EI, Cleveland JL (2001) Apoptosis-inducing factor mediates microglial and neuronal apoptosis caused by pneumococcus. J Infect Dis 184:1300–1309

    Article  CAS  PubMed  Google Scholar 

  7. Briles DE, Hollingshead SK, Swiatlo E, Brooks-Walter A, Szalai A, Virolainen A, Mac Daniel LS, Benton KA, White P, Prellner K, Hermansson A, Aerts PC, Van Dijk H, Crain MJ (1997) PspA and PspC: their potential for use as pneumococcal vaccines. Microb Drug Resist 3:401–408

    CAS  PubMed  Google Scholar 

  8. Briles DE, Yother J, McDaniel LS (1988) Role of the pneumococcal surface protein A in the virulence of Streptococcus pneumoniae. Rev Infect Dis 10: S372–374

    CAS  PubMed  Google Scholar 

  9. Brooks-Walter A, Briles DE, Hollingshead SK (1999) The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect Immun 67:6533–6542

    CAS  PubMed  Google Scholar 

  10. Cheng Q, Finkel D, Hostetter M (2000) Novel purification scheme and functions for a C3-binding protein from Streptococcus pneumoniae. Biochemistry 39:5450–5457

    Article  CAS  PubMed  Google Scholar 

  11. Cundell DR, Gerard NP, Gerard C, Idänpaän-Heikkilä I, Tuomanen EI (1995) Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature. 377:435–438

    Article  CAS  PubMed  Google Scholar 

  12. Cundell DR, Weiser JN, Shen J, Joung A, Tuomanen EI (1995) Relationship between colonial morphology and adherence of Streptococcus pneumoniae. Infect Immun 63:757–761

    CAS  PubMed  Google Scholar 

  13. Ding A H, Nathan C F, Stuehr D J (1988) Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages: comparison of activating cytokines and evidence for independent production. J Immunol 141:2407–2411

    PubMed  Google Scholar 

  14. Fearon DT (1978) Regulation by membrane sialic acid of β1H-dependent decay-dissociation of amplification C3 convertase of the alternative complement pathway. Proc Nat Acad Sci USA 75:1971–1975

    CAS  PubMed  Google Scholar 

  15. Gonzalez-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219–240

    Article  CAS  PubMed  Google Scholar 

  16. Gray BM, Converse GM III, Dillon HCJr (1980) Epidemiologic studies of Streptococcus pneumoniae in infants: acquisition, carriage, and infection during the first 24 months of life. J Infect Dis 142:923–933

    CAS  PubMed  Google Scholar 

  17. Hammerschmidt S, Talay SR, Brandtzaeg P, Chhatwal GS. (1997) SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol Microbiol 25:1113–1124

    Article  CAS  PubMed  Google Scholar 

  18. Hellwage J, Meri T, Heikkila T, Alitalo A, Panelius J, Lahdenne P, Seppala U, Meri S (2001) The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem 276:8427–8435

    Google Scholar 

  19. Hostetter MK (1986) Serotypic variation among virulent pneumococci in deposition and degradation of covalently bound C3b. Implications for phagocytosis and antibody production. J Inf Dis 153:682–693

    CAS  Google Scholar 

  20. Iannelli F, Chiavolini D, Ricci S, Oggioni MR, Pozzi G (2004) Pneumococcal surface protein C contributes to sepsis caused by Streptococcus pneumoniae. Infect Immun 72(5):3077–3080

    Article  CAS  PubMed  Google Scholar 

  21. Idänpaän-Heikkilä I, Simon PM, Zopf D, Vullo T, Cahill P, Sokol K, Tuomanen EI (1997) Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J Infect Dis 176:704–712

    PubMed  Google Scholar 

  22. Janulczyk R, Iannelli F, Sjoholm AG, Pozzi G, Bjorck L (2000) Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J Biol Chem 275(47):37257–37263

    Google Scholar 

  23. Jarva H, Janulczyk R, Hellwage J, Zipfel PF, Bjorck L, Meri S (2002) Streptococcus pneumoniae evades complement attack and opsonophagocytosis by expressing the pspC locus-encoded Hic protein that binds to short consensus repeats 8–11 of factor H. J Immunol 168:1886–1894

    CAS  PubMed  Google Scholar 

  24. Johnston RB Jr (1991) Pathogenesis of pneumococcal pneumonia. Rev Infect Dis 13:S509–517

    PubMed  Google Scholar 

  25. Kalin M, Ortqvist A, Almela M, Aufwerber E, Dwyer R, Henriques B, Jorup C, Julander I, Marrie TJ, Mufson MA, Riquelme R, Thalme A, Torres A, Woodhead MA (2000) Prospective study of prognostic factors in community-acquired bacteremic pneumococcal disease in 5 countries. J Infect Dis 182:840–847

    Article  CAS  PubMed  Google Scholar 

  26. Kotarsky H, Hellwage J, Johnsson E, Skerka C, Svensson HG, Lindahl G, Sjobring U, Zipfel PF (1998) Identification of a domain in human factor H and factor H-like protein-1 required for the interaction with streptococcal M proteins. J Immunol 160: 3349–3354

    CAS  PubMed  Google Scholar 

  27. Luo R, Mann B, Lewis WS, Rowe A, Heath R, Stewart ML, Hamburger AE, Sivakolundu Siva, Lacy ER, Bjorkman PJ, Tuomanen E, Kriwacki RW (2005) Solution structure of choline binding protein A, the major adhesin of Streptococcus pneumoniae. EMBO J 24:34–43

    Article  CAS  PubMed  Google Scholar 

  28. Meri S, Jarva H (2000) Complement regulatory proteins. In: Encyclopedia of the Life Sciences. Nature Publishing Group, London

  29. Meri S, Pangburn MK (1990) Discrimination between activators and non activators of the alternative pathway of complement: regulation via a sialic acid/polyanion binding site on factor H. Proc Nat Acad Sci USA 1987:3982–3986

    Google Scholar 

  30. Mitchell L, Smith SH, Braun JS, Herzog KH, Weber JR, Tuomanen EI (2004) Dual phases of apoptosis in pneumococcal meningitis. J Infect Dis 190:2039–2046

    Article  PubMed  Google Scholar 

  31. Morgan P, Gasque P (1996) Expression of complement in the brain: role in health and disease. Immunol Today 17(10):461–466

    Article  CAS  PubMed  Google Scholar 

  32. Mostov KE, Kaetzel CS (1999) Immunoglobulin transport and the polymeric immunoglobulin receptor. In: Lamm ME, Mestecky J, Lamm M, McGhee JR (eds) Mucosal immunology. Academic, New York

    Google Scholar 

  33. Mufson MA (1990) Streptococcus pneumoniae. In: Mandell GL, Douglas RG Jr, Bennett JE (eds) Principles and practice of infectious diseases. Churchill Livingstone Inc., New York, pp 1539–1550

    Google Scholar 

  34. Musher DM (1992) Infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity and treatment. Clin Infect Dis 14:801–807

    CAS  PubMed  Google Scholar 

  35. Orihuela CJ, Gao G, Francis KP, Yu J, Tuomanen EI (2004) Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J Infect Dis 190:1661–1669

    Article  CAS  PubMed  Google Scholar 

  36. Pangburn MK, Muller-Eberhard HJ (1978) Complement C3 convertase: cell surface restriction of β1H control and generation of restriction on neuraminidase-treated cells. Proc Nat Acad Sci USA 75:2416–2420

    CAS  PubMed  Google Scholar 

  37. Paton JC (1998) Novel pneumococcal surface proteins: role in virulence and vaccine potential. Trends Microbiol 6:85–87

    Article  CAS  PubMed  Google Scholar 

  38. Pearce BJ, Iannelli F, Pozzi G (2002) Construction of new unencapsulated (rough) strains of Streptococcus pneumoniae. Res Microbiol 1:2–10

    Google Scholar 

  39. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW (1999) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Rev 30:77–105

    Article  CAS  PubMed  Google Scholar 

  40. Ram S, Sharma AK, Simpson SD, Gulati S, McQuillen DP, Pangburn MK, Rice PA (1998) A novel sialic acid binding site on factor H mediates serum resistance of syalited Neisseria gonorrhoeae. J Exp Med 187:743–752

    Article  CAS  PubMed  Google Scholar 

  41. Ring A, Weiser JN, Tuomanen EI (1998) Pneumococcal trafficking across the Blood-Brain-Barrier: molecular analysis of a novel biridectional pathway. J Clin Invest 102:347–360

    CAS  PubMed  Google Scholar 

  42. Rosenow C, Ryan P, Weiser JN, Johnson S, Fontan P, Ortqvist A, Masure HR (1997) Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol Microbiol 25:819–829

    Article  CAS  PubMed  Google Scholar 

  43. Saleppico S, Boelaert JR, Sale FO, Mazzolla R, Morucci P, Bistoni F, Blasi E (1999) Differential effects of iron load on basal and interferon-gamma plus lipopolysaccharide enhance anticryptococcal activity by the murine microglial cell line BV-2. J Neuroimmunol 93:102–107

    Article  CAS  PubMed  Google Scholar 

  44. Sande MA, Tauber MG (2001) Pneumococcal meningitis: current pathophysiological concept. In: Tomasz (ed) Streptococcus pneumoniae: molecular biology and mechanisms of disease. Mary Ann Liebert Inc., Larchmont, pp 315–320

    Google Scholar 

  45. Shinefield HR, Black S, Ray P, Chang I, Lewis N, Fireman B, Hackell J, Paradiso PR, Siber G, Kohberger R, Madore DV, Malinowski FJ, Kimura A, Lee C, Landaw I, Anguilar J, Hansen J (1999) Safety and immunogenicity of heptavalent pneumococcal CRM197 conjugate vaccine in infants and toddlers. Pediatric Infect Dis J 18:757–763

    Article  CAS  Google Scholar 

  46. Streit WJ, Walter SA, Pennel NA (2000) Reactive microgliosis. Prog Neurobiol 57:563–581

    Article  Google Scholar 

  47. Tuomanen EI (1996) Molecular and cellular mechanisms of pneumococcal meningitis. Ann NY Acad Sci 797:42–52

    CAS  PubMed  Google Scholar 

  48. Tuomanen EI, Masure HR (1997) Molecular and cellular biology of pneumococcal infection. Microb Drug Resist 3:297–308

    CAS  PubMed  Google Scholar 

  49. van Furth AM, Roord JJ, van Furth R (1996) Roles of proinflammatory and anti-inflammatory cytokines in pathophysiology of bacterial meningitis and effect of adjunctive therapy. Infect Immun 64:4883–4890

    PubMed  Google Scholar 

  50. Weiser JN, Austrian R, Sreenivasan PK, Masure HR (1994) Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharygeal colonization. Infect Immun 62:2582–2589

    CAS  PubMed  Google Scholar 

  51. Wourimaa T, Kayhty H (2002) Current state of pneumococcal vaccines. Scand J Immunol 56:111–129

    Article  PubMed  Google Scholar 

  52. Yother J, Briles DE. (1992) Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J Bacteriol 174:601–609

    CAS  PubMed  Google Scholar 

  53. Zhang JR, Mostov KE, Lamm ME, Nanno M, Shimida S, Ohwaki M, Tuomanen EI (2000) The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102:827–837

    Article  CAS  PubMed  Google Scholar 

  54. Zweigner J, Jackowski S, Smith SH, van der Merwe M, Weber JR, Tuomanen EI (2004) Bacterial inhibition of phosphatidylcholine synthesis triggers apoptosis in the brain. J Exp Med 200:99–106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Antonio Martino for his excellent support in artwork and Susanna Ricci for her suggestions, discussion and critical reading of the manuscript. This work was supported in part by a grant from MIUR to Samuele Peppoloni (PRIN 2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuele Peppoloni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peppoloni, S., Colombari, B., Neglia, R. et al. The lack of Pneumococcal surface protein C (PspC) increases the susceptibility of Streptococcus pneumoniae to the killing by microglia. Med Microbiol Immunol 195, 21–28 (2006). https://doi.org/10.1007/s00430-005-0243-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-005-0243-8

Keywords

Navigation